Abstract:Current face anonymization techniques often depend on identity loss calculated by face recognition models, which can be inaccurate and unreliable. Additionally, many methods require supplementary data such as facial landmarks and masks to guide the synthesis process. In contrast, our approach uses diffusion models with only a reconstruction loss, eliminating the need for facial landmarks or masks while still producing images with intricate, fine-grained details. We validated our results on two public benchmarks through both quantitative and qualitative evaluations. Our model achieves state-of-the-art performance in three key areas: identity anonymization, facial attribute preservation, and image quality. Beyond its primary function of anonymization, our model can also perform face swapping tasks by incorporating an additional facial image as input, demonstrating its versatility and potential for diverse applications. Our code and models are available at https://github.com/hanweikung/face_anon_simple .
Abstract:In this paper, we study a practical yet challenging task, On-the-fly Category Discovery (OCD), aiming to online discover the newly-coming stream data that belong to both known and unknown classes, by leveraging only known category knowledge contained in labeled data. Previous OCD methods employ the hash-based technique to represent old/new categories by hash codes for instance-wise inference. However, directly mapping features into low-dimensional hash space not only inevitably damages the ability to distinguish classes and but also causes "high sensitivity" issue, especially for fine-grained classes, leading to inferior performance. To address these issues, we propose a novel Prototypical Hash Encoding (PHE) framework consisting of Category-aware Prototype Generation (CPG) and Discriminative Category Encoding (DCE) to mitigate the sensitivity of hash code while preserving rich discriminative information contained in high-dimension feature space, in a two-stage projection fashion. CPG enables the model to fully capture the intra-category diversity by representing each category with multiple prototypes. DCE boosts the discrimination ability of hash code with the guidance of the generated category prototypes and the constraint of minimum separation distance. By jointly optimizing CPG and DCE, we demonstrate that these two components are mutually beneficial towards an effective OCD. Extensive experiments show the significant superiority of our PHE over previous methods, e.g., obtaining an improvement of +5.3% in ALL ACC averaged on all datasets. Moreover, due to the nature of the interpretable prototypes, we visually analyze the underlying mechanism of how PHE helps group certain samples into either known or unknown categories. Code is available at https://github.com/HaiyangZheng/PHE.
Abstract:Referring 3D Segmentation is a visual-language task that segments all points of the specified object from a 3D point cloud described by a sentence of query. Previous works perform a two-stage paradigm, first conducting language-agnostic instance segmentation then matching with given text query. However, the semantic concepts from text query and visual cues are separately interacted during the training, and both instance and semantic labels for each object are required, which is time consuming and human-labor intensive. To mitigate these issues, we propose a novel Referring 3D Segmentation pipeline, Label-Efficient and Single-Stage, dubbed LESS, which is only under the supervision of efficient binary mask. Specifically, we design a Point-Word Cross-Modal Alignment module for aligning the fine-grained features of points and textual embedding. Query Mask Predictor module and Query-Sentence Alignment module are introduced for coarse-grained alignment between masks and query. Furthermore, we propose an area regularization loss, which coarsely reduces irrelevant background predictions on a large scale. Besides, a point-to-point contrastive loss is proposed concentrating on distinguishing points with subtly similar features. Through extensive experiments, we achieve state-of-the-art performance on ScanRefer dataset by surpassing the previous methods about 3.7% mIoU using only binary labels.
Abstract:Riemannian neural networks, which extend deep learning techniques to Riemannian spaces, have gained significant attention in machine learning. To better classify the manifold-valued features, researchers have started extending Euclidean multinomial logistic regression (MLR) into Riemannian manifolds. However, existing approaches suffer from limited applicability due to their strong reliance on specific geometric properties. This paper proposes a framework for designing Riemannian MLR over general geometries, referred to as RMLR. Our framework only requires minimal geometric properties, thus exhibiting broad applicability and enabling its use with a wide range of geometries. Specifically, we showcase our framework on the Symmetric Positive Definite (SPD) manifold and special orthogonal group, i.e., the set of rotation matrices. On the SPD manifold, we develop five families of SPD MLRs under five types of power-deformed metrics. On rotation matrices we propose Lie MLR based on the popular bi-invariant metric. Extensive experiments on different Riemannian backbone networks validate the effectiveness of our framework.
Abstract:Multi-view clustering aims to study the complementary information across views and discover the underlying structure. For solving the relatively high computational cost for the existing approaches, works based on anchor have been presented recently. Even with acceptable clustering performance, these methods tend to map the original representation from multiple views into a fixed shared graph based on the original dataset. However, most studies ignore the discriminative property of the learned anchors, which ruin the representation capability of the built model. Moreover, the complementary information among anchors across views is neglected to be ensured by simply learning the shared anchor graph without considering the quality of view-specific anchors. In this paper, we propose discriminative anchor learning for multi-view clustering (DALMC) for handling the above issues. We learn discriminative view-specific feature representations according to the original dataset and build anchors from different views based on these representations, which increase the quality of the shared anchor graph. The discriminative feature learning and consensus anchor graph construction are integrated into a unified framework to improve each other for realizing the refinement. The optimal anchors from multiple views and the consensus anchor graph are learned with the orthogonal constraints. We give an iterative algorithm to deal with the formulated problem. Extensive experiments on different datasets show the effectiveness and efficiency of our method compared with other methods.
Abstract:Diffusion models have significantly advanced generative AI, but they encounter difficulties when generating complex combinations of multiple objects. As the final result heavily depends on the initial seed, accurately ensuring the desired output can require multiple iterations of the generation process. This repetition not only leads to a waste of time but also increases energy consumption, echoing the challenges of efficiency and accuracy in complex generative tasks. To tackle this issue, we introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process. The HEaD pipeline combines cross-attention maps with a new indicator, the Predicted Final Image, to forecast the final outcome by leveraging the information available at early stages of the generation process. We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image, i.e. an image where all requested objects are accurately depicted. Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario and underscore the importance of early detection mechanisms in generative models.
Abstract:Recent progress in Text-to-Image (T2I) generative models has enabled high-quality image generation. As performance and accessibility increase, these models are gaining significant attraction and popularity: ensuring their fairness and safety is a priority to prevent the dissemination and perpetuation of biases. However, existing studies in bias detection focus on closed sets of predefined biases (e.g., gender, ethnicity). In this paper, we propose a general framework to identify, quantify, and explain biases in an open set setting, i.e. without requiring a predefined set. This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions. Next, these captions are used by the target generative model for generating a set of images. Finally, Vision Question Answering (VQA) is leveraged for bias evaluation. We show two variations of this framework: OpenBias and GradBias. OpenBias detects and quantifies biases, while GradBias determines the contribution of individual prompt words on biases. OpenBias effectively detects both well-known and novel biases related to people, objects, and animals and highly aligns with existing closed-set bias detection methods and human judgment. GradBias shows that neutral words can significantly influence biases and it outperforms several baselines, including state-of-the-art foundation models. Code available here: https://github.com/Moreno98/GradBias.
Abstract:The integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection. However, this combination often struggles with capturing semantic information effectively. Moreover, relying solely on point features within regions of interest can lead to information loss and limitations in local feature representation. To tackle these challenges, we propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN). PVAFN leverages an attention mechanism to improve multi-modal feature fusion during the feature extraction phase. In the refinement stage, it utilizes a multi-pooling strategy to integrate both multi-scale and region-specific information effectively. The point-voxel attention mechanism adaptively combines point cloud and voxel-based Bird's-Eye-View (BEV) features, resulting in richer object representations that help to reduce false detections. Additionally, a multi-pooling enhancement module is introduced to boost the model's perception capabilities. This module employs cluster pooling and pyramid pooling techniques to efficiently capture key geometric details and fine-grained shape structures, thereby enhancing the integration of local and global features. Extensive experiments on the KITTI and Waymo datasets demonstrate that the proposed PVAFN achieves competitive performance. The code and models will be available.
Abstract:In speaker tracking research, integrating and complementing multi-modal data is a crucial strategy for improving the accuracy and robustness of tracking systems. However, tracking with incomplete modalities remains a challenging issue due to noisy observations caused by occlusion, acoustic noise, and sensor failures. Especially when there is missing data in multiple modalities, the performance of existing multi-modal fusion methods tends to decrease. To this end, we propose a Global-Local Distillation-based Tracker (GLDTracker) for robust audio-visual speaker tracking. GLDTracker is driven by a teacher-student distillation model, enabling the flexible fusion of incomplete information from each modality. The teacher network processes global signals captured by camera and microphone arrays, and the student network handles local information subject to visual occlusion and missing audio channels. By transferring knowledge from teacher to student, the student network can better adapt to complex dynamic scenes with incomplete observations. In the student network, a global feature reconstruction module based on the generative adversarial network is constructed to reconstruct global features from feature embedding with missing local information. Furthermore, a multi-modal multi-level fusion attention is introduced to integrate the incomplete feature and the reconstructed feature, leveraging the complementarity and consistency of audio-visual and global-local features. Experimental results on the AV16.3 dataset demonstrate that the proposed GLDTracker outperforms existing state-of-the-art audio-visual trackers and achieves leading performance on both standard and incomplete modalities datasets, highlighting its superiority and robustness in complex conditions. The code and models will be available.
Abstract:3D Gaussian Splatting (3DGS) has become the de facto method of 3D representation in many vision tasks. This calls for the 3D understanding directly in this representation space. To facilitate the research in this direction, we first build a large-scale dataset of 3DGS using the commonly used ShapeNet and ModelNet datasets. Our dataset ShapeSplat consists of 65K objects from 87 unique categories, whose labels are in accordance with the respective datasets. The creation of this dataset utilized the compute equivalent of 2 GPU years on a TITAN XP GPU. We utilize our dataset for unsupervised pretraining and supervised finetuning for classification and segmentation tasks. To this end, we introduce \textbf{\textit{Gaussian-MAE}}, which highlights the unique benefits of representation learning from Gaussian parameters. Through exhaustive experiments, we provide several valuable insights. In particular, we show that (1) the distribution of the optimized GS centroids significantly differs from the uniformly sampled point cloud (used for initialization) counterpart; (2) this change in distribution results in degradation in classification but improvement in segmentation tasks when using only the centroids; (3) to leverage additional Gaussian parameters, we propose Gaussian feature grouping in a normalized feature space, along with splats pooling layer, offering a tailored solution to effectively group and embed similar Gaussians, which leads to notable improvement in finetuning tasks.