Abstract:The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). owever, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at \href{https://github.com/TyroneLi/CUA_O3D}{CUA_O3D}.
Abstract:The Latent Diffusion Model (LDM) has demonstrated strong capabilities in high-resolution image generation and has been widely employed for Pose-Guided Person Image Synthesis (PGPIS), yielding promising results. However, the compression process of LDM often results in the deterioration of details, particularly in sensitive areas such as facial features and clothing textures. In this paper, we propose a Multi-focal Conditioned Latent Diffusion (MCLD) method to address these limitations by conditioning the model on disentangled, pose-invariant features from these sensitive regions. Our approach utilizes a multi-focal condition aggregation module, which effectively integrates facial identity and texture-specific information, enhancing the model's ability to produce appearance realistic and identity-consistent images. Our method demonstrates consistent identity and appearance generation on the DeepFashion dataset and enables flexible person image editing due to its generation consistency. The code is available at https://github.com/jqliu09/mcld.
Abstract:Vision-language models (VLMs) often inherit the biases and unsafe associations present within their large-scale training dataset. While recent approaches mitigate unsafe behaviors, their evaluation focuses on how safe the model is on unsafe inputs, ignoring potential shortcomings on safe ones. In this paper, we first revise safety evaluation by introducing SafeGround, a new set of metrics that evaluate safety at different levels of granularity. With this metric, we uncover a surprising issue of training-based methods: they make the model less safe on safe inputs. From this finding, we take a different direction and explore whether it is possible to make a model safer without training, introducing Unsafe Weights Manipulation (UWM). UWM uses a calibration set of safe and unsafe instances to compare activations between safe and unsafe content, identifying the most important parameters for processing the latter. Their values are then manipulated via negation. Experiments show that UWM achieves the best tradeoff between safety and knowledge preservation, consistently improving VLMs on unsafe queries while outperforming even training-based state-of-the-art methods on safe ones.
Abstract:Privacy concerns around ever increasing number of cameras are increasing in today's digital age. Although existing anonymization methods are able to obscure identity information, they often struggle to preserve the utility of the images. In this work, we introduce a training-free method for face anonymization that preserves key non-identity-related attributes. Our approach utilizes a pre-trained text-to-image diffusion model without requiring optimization or training. It begins by inverting the input image to recover its initial noise. The noise is then denoised through an identity-conditioned diffusion process, where modified identity embeddings ensure the anonymized face is distinct from the original identity. Our approach also supports localized anonymization, giving users control over which facial regions are anonymized or kept intact. Comprehensive evaluations against state-of-the-art methods show our approach excels in anonymization, attribute preservation, and image quality. Its flexibility, robustness, and practicality make it well-suited for real-world applications. Code and data can be found at https://github.com/hanweikung/nullface .
Abstract:Despite its prevalent use in image-text matching tasks in a zero-shot manner, CLIP has been shown to be highly vulnerable to adversarial perturbations added onto images. Recent studies propose to finetune the vision encoder of CLIP with adversarial samples generated on the fly, and show improved robustness against adversarial attacks on a spectrum of downstream datasets, a property termed as zero-shot robustness. In this paper, we show that malicious perturbations that seek to maximise the classification loss lead to `falsely stable' images, and propose to leverage the pre-trained vision encoder of CLIP to counterattack such adversarial images during inference to achieve robustness. Our paradigm is simple and training-free, providing the first method to defend CLIP from adversarial attacks at test time, which is orthogonal to existing methods aiming to boost zero-shot adversarial robustness of CLIP. We conduct experiments across 16 classification datasets, and demonstrate stable and consistent gains compared to test-time defence methods adapted from existing adversarial robustness studies that do not rely on external networks, without noticeably impairing performance on clean images. We also show that our paradigm can be employed on CLIP models that have been adversarially finetuned to further enhance their robustness at test time. Our code is available \href{https://github.com/Sxing2/CLIP-Test-time-Counterattacks}{here}.
Abstract:Point cloud registration approaches often fail when the overlap between point clouds is low due to noisy point correspondences. This work introduces a novel cross-attention mechanism tailored for Transformer-based architectures that tackles this problem, by fusing information from coordinates and features at the super-point level between point clouds. This formulation has remained unexplored primarily because it must guarantee rotation and translation invariance since point clouds reside in different and independent reference frames. We integrate the Gromov-Wasserstein distance into the cross-attention formulation to jointly compute distances between points across different point clouds and account for their geometric structure. By doing so, points from two distinct point clouds can attend to each other under arbitrary rigid transformations. At the point level, we also devise a self-attention mechanism that aggregates the local geometric structure information into point features for fine matching. Our formulation boosts the number of inlier correspondences, thereby yielding more precise registration results compared to state-of-the-art approaches. We have conducted an extensive evaluation on 3DMatch, 3DLoMatch, KITTI, and 3DCSR datasets.
Abstract:Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.
Abstract:Low-rank Adaptation (LoRA) has demonstrated remarkable capabilities for task specific fine-tuning. However, in scenarios that involve multiple tasks, training a separate LoRA model for each one results in considerable inefficiency in terms of storage and inference. Moreover, existing parameter generation methods fail to capture the correlations among these tasks, making multi-task LoRA parameter generation challenging. To address these limitations, we propose In-Context Meta LoRA (ICM-LoRA), a novel approach that efficiently achieves task-specific customization of large language models (LLMs). Specifically, we use training data from all tasks to train a tailored generator, Conditional Variational Autoencoder (CVAE). CVAE takes task descriptions as inputs and produces task-aware LoRA weights as outputs. These LoRA weights are then merged with LLMs to create task-specialized models without the need for additional fine-tuning. Furthermore, we utilize in-context meta-learning for knowledge enhancement and task mapping, to capture the relationship between tasks and parameter distributions. As a result, our method achieves more accurate LoRA parameter generation for diverse tasks using CVAE. ICM-LoRA enables more accurate LoRA parameter reconstruction than current parameter reconstruction methods and is useful for implementing task-specific enhancements of LoRA parameters. At the same time, our method occupies 283MB, only 1\% storage compared with the original LoRA.
Abstract:In this paper, we propose a novel cross-attention-based generative adversarial network (GAN) for the challenging person image generation task. Cross-attention is a novel and intuitive multi-modal fusion method in which an attention/correlation matrix is calculated between two feature maps of different modalities. Specifically, we propose the novel XingGAN (or CrossingGAN), which consists of two generation branches that capture the person's appearance and shape, respectively. Moreover, we propose two novel cross-attention blocks to effectively transfer and update the person's shape and appearance embeddings for mutual improvement. This has not been considered by any other existing GAN-based image generation work. To further learn the long-range correlations between different person poses at different scales and sub-regions, we propose two novel multi-scale cross-attention blocks. To tackle the issue of independent correlation computations within the cross-attention mechanism leading to noisy and ambiguous attention weights, which hinder performance improvements, we propose a module called enhanced attention (EA). Lastly, we introduce a novel densely connected co-attention module to fuse appearance and shape features at different stages effectively. Extensive experiments on two public datasets demonstrate that the proposed method outperforms current GAN-based methods and performs on par with diffusion-based methods. However, our method is significantly faster than diffusion-based methods in both training and inference.
Abstract:Convolutional neural networks (CNNs) can learn directly from raw data, resulting in exceptional performance across various research areas. However, factors present in non-controllable environments such as unlabeled datasets with varying levels of domain and category shift can reduce model accuracy. The Open Set Domain Adaptation (OSDA) is a challenging problem that arises when both of these issues occur together. Existing OSDA approaches in literature only align known classes or use supervised training to learn unknown classes as a single new category. In this work, we introduce a new approach to improve OSDA techniques by extracting a set of high-confidence unknown instances and using it as a hard constraint to tighten the classification boundaries. Specifically, we use a new loss constraint that is evaluated in three different ways: (1) using pristine negative instances directly; (2) using data augmentation techniques to create randomly transformed negatives; and (3) with generated synthetic negatives containing adversarial features. We analyze different strategies to improve the discriminator and the training of the Generative Adversarial Network (GAN) used to generate synthetic negatives. We conducted extensive experiments and analysis on OVANet using three widely-used public benchmarks, the Office-31, Office-Home, and VisDA datasets. We were able to achieve similar H-score to other state-of-the-art methods, while increasing the accuracy on unknown categories.