Abstract:Enabling Large Language Models (LLMs) to understand the 3D physical world is an emerging yet challenging research direction. Current strategies for processing point clouds typically downsample the scene or divide it into smaller parts for separate analysis. However, both approaches risk losing key local details or global contextual information. In this paper, we introduce PerLA, a 3D language assistant designed to be more perceptive to both details and context, making visual representations more informative for the LLM. PerLA captures high-resolution (local) details in parallel from different point cloud areas and integrates them with (global) context obtained from a lower-resolution whole point cloud. We present a novel algorithm that preserves point cloud locality through the Hilbert curve and effectively aggregates local-to-global information via cross-attention and a graph neural network. Lastly, we introduce a novel loss for local representation consensus to promote training stability. PerLA outperforms state-of-the-art 3D language assistants, with gains of up to +1.34 CiDEr on ScanQA for question answering, and +4.22 on ScanRefer and +3.88 on Nr3D for dense captioning.\url{https://gfmei.github.io/PerLA/}
Abstract:Learning meaningful local and global information remains a challenge in point cloud segmentation tasks. When utilizing local information, prior studies indiscriminately aggregates neighbor information from different classes to update query points, potentially compromising the distinctive feature of query points. In parallel, inaccurate modeling of long-distance contextual dependencies when utilizing global information can also impact model performance. To address these issues, we propose GSTran, a novel transformer network tailored for the segmentation task. The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer. In the local geometric transformer module, we explicitly calculate the geometric disparity within the local region. This enables amplifying the affinity with geometrically similar neighbor points while suppressing the association with other neighbors. In the global semantic transformer module, we design a multi-head voting strategy. This strategy evaluates semantic similarity across the entire spatial range, facilitating the precise capture of contextual dependencies. Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method, showing its superiority over other algorithms. The code is available at https://github.com/LAB123-tech/GSTran.
Abstract:Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering ``List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available.
Abstract:Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones. However, in 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant. This raises the question: Can we take the best of both worlds? To answer this question, we first empirically validate that integrating MAE-based point cloud pre-training with the standard contrastive learning paradigm, even with meticulous design, can lead to a decrease in performance. To address this limitation, we reintroduce CL into the MAE-based point cloud pre-training paradigm by leveraging the inherent contrastive properties of MAE. Specifically, rather than relying on extensive data augmentation as commonly used in the image domain, we randomly mask the input tokens twice to generate contrastive input pairs. Subsequently, a weight-sharing encoder and two identically structured decoders are utilized to perform masked token reconstruction. Additionally, we propose that for an input token masked by both masks simultaneously, the reconstructed features should be as similar as possible. This naturally establishes an explicit contrastive constraint within the generative MAE-based pre-training paradigm, resulting in our proposed method, Point-CMAE. Consequently, Point-CMAE effectively enhances the representation quality and transfer performance compared to its MAE counterpart. Experimental evaluations across various downstream applications, including classification, part segmentation, and few-shot learning, demonstrate the efficacy of our framework in surpassing state-of-the-art techniques under standard ViTs and single-modal settings. The source code and trained models are available at: https://github.com/Amazingren/Point-CMAE.
Abstract:Learning-based point cloud registration approaches have significantly outperformed their traditional counterparts. However, they typically require extensive training on specific datasets. In this paper, we propose , the first zero-shot point cloud registration approach that eliminates the need for training on point cloud datasets. The cornerstone of ZeroReg is the novel transfer of image features from keypoints to the point cloud, enriched by aggregating information from 3D geometric neighborhoods. Specifically, we extract keypoints and features from 2D image pairs using a frozen pretrained 2D backbone. These features are then projected in 3D, and patches are constructed by searching for neighboring points. We integrate the geometric and visual features of each point using our novel parameter-free geometric decoder. Subsequently, the task of determining correspondences between point clouds is formulated as an optimal transport problem. Extensive evaluations of ZeroReg demonstrate its competitive performance against both traditional and learning-based methods. On benchmarks such as 3DMatch, 3DLoMatch, and ScanNet, ZeroReg achieves impressive Recall Ratios (RR) of over 84%, 46%, and 75%, respectively.
Abstract:Zero-shot 3D point cloud understanding can be achieved via 2D Vision-Language Models (VLMs). Existing strategies directly map Vision-Language Models from 2D pixels of rendered or captured views to 3D points, overlooking the inherent and expressible point cloud geometric structure. Geometrically similar or close regions can be exploited for bolstering point cloud understanding as they are likely to share semantic information. To this end, we introduce the first training-free aggregation technique that leverages the point cloud's 3D geometric structure to improve the quality of the transferred Vision-Language Models. Our approach operates iteratively, performing local-to-global aggregation based on geometric and semantic point-level reasoning. We benchmark our approach on three downstream tasks, including classification, part segmentation, and semantic segmentation, with a variety of datasets representing both synthetic/real-world, and indoor/outdoor scenarios. Our approach achieves new state-of-the-art results in all benchmarks. We will release the source code publicly.
Abstract:Pre-training a model and then fine-tuning it on downstream tasks has demonstrated significant success in the 2D image and NLP domains. However, due to the unordered and non-uniform density characteristics of point clouds, it is non-trivial to explore the prior knowledge of point clouds and pre-train a point cloud backbone. In this paper, we propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif). We consider the point cloud pre-training task as a conditional point-to-point generation problem and introduce a conditional point generator. This generator aggregates the features extracted by the backbone and employs them as the condition to guide the point-to-point recovery from the noisy point cloud, thereby assisting the backbone in capturing both local and global geometric priors as well as the global point density distribution of the object. We also present a recurrent uniform sampling optimization strategy, which enables the model to uniformly recover from various noise levels and learn from balanced supervision. Our PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection. Specifically, PointDif attains 70.0% mIoU on S3DIS Area 5 for the segmentation task and achieves an average improvement of 2.4% on ScanObjectNN for the classification task compared to TAP. Furthermore, our pre-training framework can be flexibly applied to diverse point cloud backbones and bring considerable gains.
Abstract:This paper presents an investigation into the estimation of optical and scene flow using RGBD information in scenarios where the RGB modality is affected by noise or captured in dark environments. Existing methods typically rely solely on RGB images or fuse the modalities at later stages, which can result in lower accuracy when the RGB information is unreliable. To address this issue, we propose a novel deep neural network approach named FusionRAFT, which enables early-stage information fusion between sensor modalities (RGB and depth). Our approach incorporates self- and cross-attention layers at different network levels to construct informative features that leverage the strengths of both modalities. Through comparative experiments, we demonstrate that our approach outperforms recent methods in terms of performance on the synthetic dataset Flyingthings3D, as well as the generalization on the real-world dataset KITTI. We illustrate that our approach exhibits improved robustness in the presence of noise and low-lighting conditions that affect the RGB images. We release the code, models and dataset at https://github.com/jiesico/FusionRAFT.
Abstract:The emerging topic of cross-source point cloud (CSPC) registration has attracted increasing attention with the fast development background of 3D sensor technologies. Different from the conventional same-source point clouds that focus on data from same kind of 3D sensor (e.g., Kinect), CSPCs come from different kinds of 3D sensors (e.g., Kinect and { LiDAR}). CSPC registration generalizes the requirement of data acquisition from same-source to different sources, which leads to generalized applications and combines the advantages of multiple sensors. In this paper, we provide a systematic review on CSPC registration. We first present the characteristics of CSPC, and then summarize the key challenges in this research area, followed by the corresponding research progress consisting of the most recent and representative developments on this topic. Finally, we discuss the important research directions in this vibrant area and explain the role in several application fields.
Abstract:Deep point cloud registration methods face challenges to partial overlaps and rely on labeled data. To address these issues, we propose UDPReg, an unsupervised deep probabilistic registration framework for point clouds with partial overlaps. Specifically, we first adopt a network to learn posterior probability distributions of Gaussian mixture models (GMMs) from point clouds. To handle partial point cloud registration, we apply the Sinkhorn algorithm to predict the distribution-level correspondences under the constraint of the mixing weights of GMMs. To enable unsupervised learning, we design three distribution consistency-based losses: self-consistency, cross-consistency, and local contrastive. The self-consistency loss is formulated by encouraging GMMs in Euclidean and feature spaces to share identical posterior distributions. The cross-consistency loss derives from the fact that the points of two partially overlapping point clouds belonging to the same clusters share the cluster centroids. The cross-consistency loss allows the network to flexibly learn a transformation-invariant posterior distribution of two aligned point clouds. The local contrastive loss facilitates the network to extract discriminative local features. Our UDPReg achieves competitive performance on the 3DMatch/3DLoMatch and ModelNet/ModelLoNet benchmarks.