Abstract:The task of text-to-image generation has achieved tremendous success in practice, with emerging concept generation models capable of producing highly personalized and customized content. Fervor for concept generation is increasing rapidly among users, and platforms for concept sharing have sprung up. The concept owners may upload malicious concepts and disguise them with non-malicious text descriptions and example images to deceive users into downloading and generating malicious content. The platform needs a quick method to determine whether a concept is malicious to prevent the spread of malicious concepts. However, simply relying on concept image generation to judge whether a concept is malicious requires time and computational resources. Especially, as the number of concepts uploaded and downloaded on the platform continues to increase, this approach becomes impractical and poses a risk of generating malicious content. In this paper, we propose Concept QuickLook, the first systematic work to incorporate malicious concept detection into research, which performs detection based solely on concept files without generating any images. We define malicious concepts and design two work modes for detection: concept matching and fuzzy detection. Extensive experiments demonstrate that the proposed Concept QuickLook can detect malicious concepts and demonstrate practicality in concept sharing platforms. We also design robustness experiments to further validate the effectiveness of the solution. We hope this work can initiate malicious concept detection tasks and provide some inspiration.
Abstract:Omnidirectional image quality assessment (OIQA) has been widely investigated in the past few years and achieved much success. However, most of existing studies are dedicated to solve the uniform distortion problem in OIQA, which has a natural gap with the non-uniform distortion problem, and their ability in capturing non-uniform distortion is far from satisfactory. To narrow this gap, in this paper, we propose a multitask auxiliary network for non-uniformly distorted omnidirectional images, where the parameters are optimized by jointly training the main task and other auxiliary tasks. The proposed network mainly consists of three parts: a backbone for extracting multiscale features from the viewport sequence, a multitask feature selection module for dynamically allocating specific features to different tasks, and auxiliary sub-networks for guiding the proposed model to capture local distortion and global quality change. Extensive experiments conducted on two large-scale OIQA databases demonstrate that the proposed model outperforms other state-of-the-art OIQA metrics, and these auxiliary sub-networks contribute to improve the performance of the proposed model. The source code is available at https://github.com/RJL2000/MTAOIQA.
Abstract:The discriminative feature is crucial for point cloud registration. Recent methods improve the feature discriminative by distinguishing between non-overlapping and overlapping region points. However, they still face challenges in distinguishing the ambiguous structures in the overlapping regions. Therefore, the ambiguous features they extracted resulted in a significant number of outlier matches from overlapping regions. To solve this problem, we propose a prior-guided SMoE-based registration method to improve the feature distinctiveness by dispatching the potential correspondences to the same experts. Specifically, we propose a prior-guided SMoE module by fusing prior overlap and potential correspondence embeddings for routing, assigning tokens to the most suitable experts for processing. In addition, we propose a registration framework by a specific combination of Transformer layer and prior-guided SMoE module. The proposed method not only pays attention to the importance of locating the overlapping areas of point clouds, but also commits to finding more accurate correspondences in overlapping areas. Our extensive experiments demonstrate the effectiveness of our method, achieving state-of-the-art registration recall (95.7\%/79.3\%) on the 3DMatch/3DLoMatch benchmark. Moreover, we also test the performance on ModelNet40 and demonstrate excellent performance.
Abstract:With the rapid development of multimedia processing and deep learning technologies, especially in the field of video understanding, video quality assessment (VQA) has achieved significant progress. Although researchers have moved from designing efficient video quality mapping models to various research directions, in-depth exploration of the effectiveness-efficiency trade-offs of spatio-temporal modeling in VQA models is still less sufficient. Considering the fact that videos have highly redundant information, this paper investigates this problem from the perspective of joint spatial and temporal sampling, aiming to seek the answer to how little information we should keep at least when feeding videos into the VQA models while with acceptable performance sacrifice. To this end, we drastically sample the video's information from both spatial and temporal dimensions, and the heavily squeezed video is then fed into a stable VQA model. Comprehensive experiments regarding joint spatial and temporal sampling are conducted on six public video quality databases, and the results demonstrate the acceptable performance of the VQA model when throwing away most of the video information. Furthermore, with the proposed joint spatial and temporal sampling strategy, we make an initial attempt to design an online VQA model, which is instantiated by as simple as possible a spatial feature extractor, a temporal feature fusion module, and a global quality regression module. Through quantitative and qualitative experiments, we verify the feasibility of online VQA model by simplifying itself and reducing input.
Abstract:Learning meaningful local and global information remains a challenge in point cloud segmentation tasks. When utilizing local information, prior studies indiscriminately aggregates neighbor information from different classes to update query points, potentially compromising the distinctive feature of query points. In parallel, inaccurate modeling of long-distance contextual dependencies when utilizing global information can also impact model performance. To address these issues, we propose GSTran, a novel transformer network tailored for the segmentation task. The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer. In the local geometric transformer module, we explicitly calculate the geometric disparity within the local region. This enables amplifying the affinity with geometrically similar neighbor points while suppressing the association with other neighbors. In the global semantic transformer module, we design a multi-head voting strategy. This strategy evaluates semantic similarity across the entire spatial range, facilitating the precise capture of contextual dependencies. Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method, showing its superiority over other algorithms. The code is available at https://github.com/LAB123-tech/GSTran.
Abstract:Deep learning brought boosts to auto diabetic retinopathy (DR) diagnosis, thus, greatly helping ophthalmologists for early disease detection, which contributes to preventing disease deterioration that may eventually lead to blindness. It has been proved that convolutional neural network (CNN)-aided lesion identifying or segmentation benefits auto DR screening. The key to fine-grained lesion tasks mainly lies in: (1) extracting features being both sensitive to tiny lesions and robust against DR-irrelevant interference, and (2) exploiting and re-using encoded information to restore lesion locations under extremely imbalanced data distribution. To this end, we propose a CNN-based DR diagnosis network with attention mechanism involved, termed lesion-aware network, to better capture lesion information from imbalanced data. Specifically, we design the lesion-aware module (LAM) to capture noise-like lesion areas across deeper layers, and the feature-preserve module (FPM) to assist shallow-to-deep feature fusion. Afterward, the proposed lesion-aware network (LANet) is constructed by embedding the LAM and FPM into the CNN decoders for DR-related information utilization. The proposed LANet is then further extended to a DR screening network by adding a classification layer. Through experiments on three public fundus datasets with pixel-level annotations, our method outperforms the mainstream methods with an area under curve of 0.967 in DR screening, and increases the overall average precision by 7.6%, 2.1%, and 1.2% in lesion segmentation on three datasets. Besides, the ablation study validates the effectiveness of the proposed sub-modules.
Abstract:Contemporary color difference (CD) measures for photographic images typically operate by comparing co-located pixels, patches in a ``perceptually uniform'' color space, or features in a learned latent space. Consequently, these measures inadequately capture the human color perception of misaligned image pairs, which are prevalent in digital photography (e.g., the same scene captured by different smartphones). In this paper, we describe a perceptual CD measure based on the multiscale sliced Wasserstein distance, which facilitates efficient comparisons between non-local patches of similar color and structure. This aligns with the modern understanding of color perception, where color and structure are inextricably interdependent as a unitary process of perceptual organization. Meanwhile, our method is easy to implement and training-free. Experimental results indicate that our CD measure performs favorably in assessing CDs in photographic images, and consistently surpasses competing models in the presence of image misalignment. Additionally, we empirically verify that our measure functions as a metric in the mathematical sense, and show its promise as a loss function for image and video color transfer tasks. The code is available at https://github.com/real-hjq/MS-SWD.
Abstract:Arbitrary-scale video super-resolution (AVSR) aims to enhance the resolution of video frames, potentially at various scaling factors, which presents several challenges regarding spatial detail reproduction, temporal consistency, and computational complexity. In this paper, we first describe a strong baseline for AVSR by putting together three variants of elementary building blocks: 1) a flow-guided recurrent unit that aggregates spatiotemporal information from previous frames, 2) a flow-refined cross-attention unit that selects spatiotemporal information from future frames, and 3) a hyper-upsampling unit that generates scaleaware and content-independent upsampling kernels. We then introduce ST-AVSR by equipping our baseline with a multi-scale structural and textural prior computed from the pre-trained VGG network. This prior has proven effective in discriminating structure and texture across different locations and scales, which is beneficial for AVSR. Comprehensive experiments show that ST-AVSR significantly improves super-resolution quality, generalization ability, and inference speed over the state-of-theart. The code is available at https://github.com/shangwei5/ST-AVSR.
Abstract:Deep learning-based brain tumor segmentation (BTS) models for multi-modal MRI images have seen significant advancements in recent years. However, a common problem in practice is the unavailability of some modalities due to varying scanning protocols and patient conditions, making segmentation from incomplete MRI modalities a challenging issue. Previous methods have attempted to address this by fusing accessible multi-modal features, leveraging attention mechanisms, and synthesizing missing modalities using generative models. However, these methods ignore the intrinsic problems of medical image segmentation, such as the limited availability of training samples, particularly for cases with tumors. Furthermore, these methods require training and deploying a specific model for each subset of missing modalities. To address these issues, we propose a novel approach that enhances the BTS model from two perspectives. Firstly, we introduce a pre-training stage that generates a diverse pre-training dataset covering a wide range of different combinations of tumor shapes and brain anatomy. Secondly, we propose a post-training stage that enables the model to reconstruct missing modalities in the prediction results when only partial modalities are available. To achieve the pre-training stage, we conceptually decouple the MRI image into two parts: `anatomy' and `tumor'. We pre-train the BTS model using synthesized data generated from the anatomy and tumor parts across different training samples. ... Extensive experiments demonstrate that our proposed method significantly improves the performance over the baseline and achieves new state-of-the-art results on three brain tumor segmentation datasets: BRATS2020, BRATS2018, and BRATS2015.
Abstract:While recent advancements in large multimodal models (LMMs) have significantly improved their abilities in image quality assessment (IQA) relying on absolute quality rating, how to transfer reliable relative quality comparison outputs to continuous perceptual quality scores remains largely unexplored. To address this gap, we introduce Compare2Score-an all-around LMM-based no-reference IQA (NR-IQA) model, which is capable of producing qualitatively comparative responses and effectively translating these discrete comparative levels into a continuous quality score. Specifically, during training, we present to generate scaled-up comparative instructions by comparing images from the same IQA dataset, allowing for more flexible integration of diverse IQA datasets. Utilizing the established large-scale training corpus, we develop a human-like visual quality comparator. During inference, moving beyond binary choices, we propose a soft comparison method that calculates the likelihood of the test image being preferred over multiple predefined anchor images. The quality score is further optimized by maximum a posteriori estimation with the resulting probability matrix. Extensive experiments on nine IQA datasets validate that the Compare2Score effectively bridges text-defined comparative levels during training with converted single image quality score for inference, surpassing state-of-the-art IQA models across diverse scenarios. Moreover, we verify that the probability-matrix-based inference conversion not only improves the rating accuracy of Compare2Score but also zero-shot general-purpose LMMs, suggesting its intrinsic effectiveness.