Abstract:Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at https://anonymous.4open.science/r/STUM-E4F0.
Abstract:The fundamental challenge in SAR target detection lies in developing discriminative, efficient, and robust representations of target characteristics within intricate non-cooperative environments. However, accurate target detection is impeded by factors including the sparse distribution and discrete features of the targets, as well as complex background interference. In this study, we propose a \textbf{Ma}mba \textbf{Di}ffusion \textbf{Net}work (MaDiNet) for SAR target detection. Specifically, MaDiNet conceptualizes SAR target detection as the task of generating the position (center coordinates) and size (width and height) of the bounding boxes in the image space. Furthermore, we design a MambaSAR module to capture intricate spatial structural information of targets and enhance the capability of the model to differentiate between targets and complex backgrounds. The experimental results on extensive SAR target detection datasets achieve SOTA, proving the effectiveness of the proposed network. Code is available at \href{https://github.com/JoyeZLearning/MaDiNet}{https://github.com/JoyeZLearning/MaDiNet}.
Abstract:Occlusion is a longstanding difficulty that challenges the UAV-based object detection. Many works address this problem by adapting the detection model. However, few of them exploit that the UAV could fundamentally improve detection performance by changing its viewpoint. Active Object Detection (AOD) offers an effective way to achieve this purpose. Through Deep Reinforcement Learning (DRL), AOD endows the UAV with the ability of autonomous path planning to search for the observation that is more conducive to target identification. Unfortunately, there exists no available dataset for developing the UAV AOD method. To fill this gap, we released a UAV's eye view active vision dataset named UEVAVD and hope it can facilitate research on the UAV AOD problem. Additionally, we improve the existing DRL-based AOD method by incorporating the inductive bias when learning the state representation. First, due to the partial observability, we use the gated recurrent unit to extract state representations from the observation sequence instead of the single-view observation. Second, we pre-decompose the scene with the Segment Anything Model (SAM) and filter out the irrelevant information with the derived masks. With these practices, the agent could learn an active viewing policy with better generalization capability. The effectiveness of our innovations is validated by the experiments on the UEVAVD dataset. Our dataset will soon be available at https://github.com/Leo000ooo/UEVAVD_dataset.
Abstract:Photoacoustic imaging (PAI) represents an innovative biomedical imaging modality that harnesses the advantages of optical resolution and acoustic penetration depth while ensuring enhanced safety. Despite its promising potential across a diverse array of preclinical and clinical applications, the clinical implementation of PAI faces significant challenges, including the trade-off between penetration depth and spatial resolution, as well as the demand for faster imaging speeds. This paper explores the fundamental principles underlying PAI, with a particular emphasis on three primary implementations: photoacoustic computed tomography (PACT), photoacoustic microscopy (PAM), and photoacoustic endoscopy (PAE). We undertake a critical assessment of their respective strengths and practical limitations. Furthermore, recent developments in utilizing conventional or deep learning (DL) methodologies for image reconstruction and artefact mitigation across PACT, PAM, and PAE are outlined, demonstrating considerable potential to enhance image quality and accelerate imaging processes. Furthermore, this paper examines the recent developments in quantitative analysis within PAI, including the quantification of haemoglobin concentration, oxygen saturation, and other physiological parameters within tissues. Finally, our discussion encompasses current trends and future directions in PAI research while emphasizing the transformative impact of deep learning on advancing PAI.
Abstract:In question-answering scenarios, humans can assess whether the available information is sufficient and seek additional information if necessary, rather than providing a forced answer. In contrast, Vision Language Models (VLMs) typically generate direct, one-shot responses without evaluating the sufficiency of the information. To investigate this gap, we identify a critical and challenging task in the Visual Question Answering (VQA) scenario: can VLMs indicate how to adjust an image when the visual information is insufficient to answer a question? This capability is especially valuable for assisting visually impaired individuals who often need guidance to capture images correctly. To evaluate this capability of current VLMs, we introduce a human-labeled dataset as a benchmark for this task. Additionally, we present an automated framework that generates synthetic training data by simulating ``where to know'' scenarios. Our empirical results show significant performance improvements in mainstream VLMs when fine-tuned with this synthetic data. This study demonstrates the potential to narrow the gap between information assessment and acquisition in VLMs, bringing their performance closer to humans.
Abstract:The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic and comprehensive review of AIoT research. We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT. In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains. We have also created an accompanying GitHub repository, where we compile the papers included in this survey: https://github.com/AIoT-MLSys-Lab/AIoT-Survey. This repository will be actively maintained and updated with new research as it becomes available. As both IoT and AI become increasingly critical to our society, we believe AIoT is emerging as an essential research field at the intersection of IoT and modern AI. We hope this survey will serve as a valuable resource for those engaged in AIoT research and act as a catalyst for future explorations to bridge gaps and drive advancements in this exciting field.
Abstract:Adversarial Training (AT) is one of the most effective methods to enhance the robustness of DNNs. However, existing AT methods suffer from an inherent trade-off between adversarial robustness and clean accuracy, which seriously hinders their real-world deployment. While this problem has been widely studied within the current AT paradigm, existing AT methods still typically experience a reduction in clean accuracy by over 10% to date, without significant improvements in robustness compared with simple baselines like PGD-AT. This inherent trade-off raises a question: whether the current AT paradigm, which assumes to learn the corresponding benign and adversarial samples as the same class, inappropriately combines clean and robust objectives that may be essentially inconsistent. In this work, we surprisingly reveal that up to 40% of CIFAR-10 adversarial samples always fail to satisfy such an assumption across various AT methods and robust models, explicitly indicating the improvement room for the current AT paradigm. Accordingly, to relax the tension between clean and robust learning derived from this overstrict assumption, we propose a new AT paradigm by introducing an additional dummy class for each original class, aiming to accommodate the hard adversarial samples with shifted distribution after perturbation. The robustness w.r.t. these adversarial samples can be achieved by runtime recovery from the predicted dummy classes to their corresponding original ones, eliminating the compromise with clean learning. Building on this new paradigm, we propose a novel plug-and-play AT technology named DUmmy Classes-based Adversarial Training (DUCAT). Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that the DUCAT concurrently improves clean accuracy and adversarial robustness compared with state-of-the-art benchmarks, effectively breaking the existing inherent trade-off.
Abstract:The Universal Approximation Theorem posits that neural networks can theoretically possess unlimited approximation capacity with a suitable activation function and a freely chosen or trained set of parameters. However, a more practical scenario arises when these neural parameters, especially the nonlinear weights and biases, are bounded. This leads us to question: \textbf{Does the approximation capacity of a neural network remain universal, or does it have a limit when the parameters are practically bounded? And if it has a limit, how can it be measured?} Our theoretical study indicates that while universal approximation is theoretically feasible, in practical numerical scenarios, Deep Neural Networks (DNNs) with any analytic activation functions (such as Tanh and Sigmoid) can only be approximated by a finite-dimensional vector space under a bounded nonlinear parameter space (NP space), whether in a continuous or discrete sense. Based on this study, we introduce the concepts of \textit{$\epsilon$ outer measure} and \textit{Numerical Span Dimension (NSdim)} to quantify the approximation capacity limit of a family of networks both theoretically and practically. Furthermore, drawing on our new theoretical study and adopting a fresh perspective, we strive to understand the relationship between back-propagation neural networks and random parameter networks (such as the Extreme Learning Machine (ELM)) with both finite and infinite width. We also aim to provide fresh insights into regularization, the trade-off between width and depth, parameter space, width redundancy, condensation, and other related important issues.
Abstract:Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale training datasets. However, existing tracking datasets are primarily focused on open-air scenarios, which greatly limits the development of object tracking in underwater environments. To address this issue, we take a step forward by proposing the first large-scale underwater camouflaged object tracking dataset, namely UW-COT. Based on the proposed dataset, this paper presents an experimental evaluation of several advanced visual object tracking methods and the latest advancements in image and video segmentation. Specifically, we compare the performance of the Segment Anything Model (SAM) and its updated version, SAM 2, in challenging underwater environments. Our findings highlight the improvements in SAM 2 over SAM, demonstrating its enhanced capability to handle the complexities of underwater camouflaged objects. Compared to current advanced visual object tracking methods, the latest video segmentation foundation model SAM 2 also exhibits significant advantages, providing valuable insights into the development of more effective tracking technologies for underwater scenarios. The dataset will be accessible at \color{magenta}{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
Abstract:Monocular depth estimation aims to infer a dense depth map from a single image, which is a fundamental and prevalent task in computer vision. Many previous works have shown impressive depth estimation results through carefully designed network structures, but they usually ignore the planar information and therefore perform poorly in low-texture areas of indoor scenes. In this paper, we propose Plane2Depth, which adaptively utilizes plane information to improve depth prediction within a hierarchical framework. Specifically, in the proposed plane guided depth generator (PGDG), we design a set of plane queries as prototypes to softly model planes in the scene and predict per-pixel plane coefficients. Then the predicted plane coefficients can be converted into metric depth values with the pinhole camera model. In the proposed adaptive plane query aggregation (APGA) module, we introduce a novel feature interaction approach to improve the aggregation of multi-scale plane features in a top-down manner. Extensive experiments show that our method can achieve outstanding performance, especially in low-texture or repetitive areas. Furthermore, under the same backbone network, our method outperforms the state-of-the-art methods on the NYU-Depth-v2 dataset, achieves competitive results with state-of-the-art methods KITTI dataset and can be generalized to unseen scenes effectively.