Abstract:Vertical Federated Learning (VFL) is a well-known FL variant that enables multiple parties to collaboratively train a model without sharing their raw data. Existing VFL approaches focus on overlapping samples among different parties, while their performance is constrained by the limited number of these samples, leaving numerous non-overlapping samples unexplored. Some previous work has explored techniques for imputing missing values in samples, but often without adequate attention to the quality of the imputed samples. To address this issue, we propose a Reliable Imputed-Sample Assisted (RISA) VFL framework to effectively exploit non-overlapping samples by selecting reliable imputed samples for training VFL models. Specifically, after imputing non-overlapping samples, we introduce evidence theory to estimate the uncertainty of imputed samples, and only samples with low uncertainty are selected. In this way, high-quality non-overlapping samples are utilized to improve VFL model. Experiments on two widely used datasets demonstrate the significant performance gains achieved by the RISA, especially with the limited overlapping samples, e.g., a 48% accuracy gain on CIFAR-10 with only 1% overlapping samples.
Abstract:While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions to capture spatial information. In addition, we enhance the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization head with strip convolutions to better localize the target objects. Extensive experiments on several benchmarks, e.g., DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can largely improve previous works. Notably, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
Abstract:Monocular depth estimation within the diffusion-denoising paradigm demonstrates impressive generalization ability but suffers from low inference speed. Recent methods adopt a single-step deterministic paradigm to improve inference efficiency while maintaining comparable performance. However, they overlook the gap between generative and discriminative features, leading to suboptimal results. In this work, we propose DepthMaster, a single-step diffusion model designed to adapt generative features for the discriminative depth estimation task. First, to mitigate overfitting to texture details introduced by generative features, we propose a Feature Alignment module, which incorporates high-quality semantic features to enhance the denoising network's representation capability. Second, to address the lack of fine-grained details in the single-step deterministic framework, we propose a Fourier Enhancement module to adaptively balance low-frequency structure and high-frequency details. We adopt a two-stage training strategy to fully leverage the potential of the two modules. In the first stage, we focus on learning the global scene structure with the Feature Alignment module, while in the second stage, we exploit the Fourier Enhancement module to improve the visual quality. Through these efforts, our model achieves state-of-the-art performance in terms of generalization and detail preservation, outperforming other diffusion-based methods across various datasets. Our project page can be found at https://indu1ge.github.io/DepthMaster_page.
Abstract:Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. Besides, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this paper, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industry practitioners.
Abstract:Night unmanned aerial vehicle (UAV) tracking is impeded by the challenges of poor illumination, with previous daylight-optimized methods demonstrating suboptimal performance in low-light conditions, limiting the utility of UAV applications. To this end, we propose an efficient mamba-based tracker, leveraging dual enhancement techniques to boost night UAV tracking. The mamba-based low-light enhancer, equipped with an illumination estimator and a damage restorer, achieves global image enhancement while preserving the details and structure of low-light images. Additionally, we advance a cross-modal mamba network to achieve efficient interactive learning between vision and language modalities. Extensive experiments showcase that our method achieves advanced performance and exhibits significantly improved computation and memory efficiency. For instance, our method is 2.8$\times$ faster than CiteTracker and reduces 50.2$\%$ GPU memory. Codes will be made publicly available.
Abstract:Self-supervised learning has made substantial strides in image processing, while visual pre-training for autonomous driving is still in its infancy. Existing methods often focus on learning geometric scene information while neglecting texture or treating both aspects separately, hindering comprehensive scene understanding. In this context, we are excited to introduce GaussianPretrain, a novel pre-training paradigm that achieves a holistic understanding of the scene by uniformly integrating geometric and texture representations. Conceptualizing 3D Gaussian anchors as volumetric LiDAR points, our method learns a deepened understanding of scenes to enhance pre-training performance with detailed spatial structure and texture, achieving that 40.6% faster than NeRF-based method UniPAD with 70% GPU memory only. We demonstrate the effectiveness of GaussianPretrain across multiple 3D perception tasks, showing significant performance improvements, such as a 7.05% increase in NDS for 3D object detection, boosts mAP by 1.9% in HD map construction and 0.8% improvement on Occupancy prediction. These significant gains highlight GaussianPretrain's theoretical innovation and strong practical potential, promoting visual pre-training development for autonomous driving. Source code will be available at https://github.com/Public-BOTs/GaussianPretrain
Abstract:Existing cross-domain few-shot learning (CDFSL) methods, which develop source-domain training strategies to enhance model transferability, face challenges with large-scale pre-trained models (LMs) due to inaccessible source data and training strategies. Moreover, fine-tuning LMs for CDFSL demands substantial computational resources, limiting practicality. This paper addresses the source-free CDFSL (SF-CDFSL) problem, tackling few-shot learning (FSL) in the target domain using only pre-trained models and a few target samples without source data or strategies. To overcome the challenge of inaccessible source data, this paper introduces Step-wise Distribution Alignment Guided Style Prompt Tuning (StepSPT), which implicitly narrows domain gaps through prediction distribution optimization. StepSPT proposes a style prompt to align target samples with the desired distribution and adopts a dual-phase optimization process. In the external process, a step-wise distribution alignment strategy factorizes prediction distribution optimization into a multi-step alignment problem to tune the style prompt. In the internal process, the classifier is updated using standard cross-entropy loss. Evaluations on five datasets demonstrate that StepSPT outperforms existing prompt tuning-based methods and SOTAs. Ablation studies further verify its effectiveness. Code will be made publicly available at \url{https://github.com/xuhuali-mxj/StepSPT}.
Abstract:Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at https://anonymous.4open.science/r/STUM-E4F0.
Abstract:The fundamental challenge in SAR target detection lies in developing discriminative, efficient, and robust representations of target characteristics within intricate non-cooperative environments. However, accurate target detection is impeded by factors including the sparse distribution and discrete features of the targets, as well as complex background interference. In this study, we propose a \textbf{Ma}mba \textbf{Di}ffusion \textbf{Net}work (MaDiNet) for SAR target detection. Specifically, MaDiNet conceptualizes SAR target detection as the task of generating the position (center coordinates) and size (width and height) of the bounding boxes in the image space. Furthermore, we design a MambaSAR module to capture intricate spatial structural information of targets and enhance the capability of the model to differentiate between targets and complex backgrounds. The experimental results on extensive SAR target detection datasets achieve SOTA, proving the effectiveness of the proposed network. Code is available at \href{https://github.com/JoyeZLearning/MaDiNet}{https://github.com/JoyeZLearning/MaDiNet}.
Abstract:Occlusion is a longstanding difficulty that challenges the UAV-based object detection. Many works address this problem by adapting the detection model. However, few of them exploit that the UAV could fundamentally improve detection performance by changing its viewpoint. Active Object Detection (AOD) offers an effective way to achieve this purpose. Through Deep Reinforcement Learning (DRL), AOD endows the UAV with the ability of autonomous path planning to search for the observation that is more conducive to target identification. Unfortunately, there exists no available dataset for developing the UAV AOD method. To fill this gap, we released a UAV's eye view active vision dataset named UEVAVD and hope it can facilitate research on the UAV AOD problem. Additionally, we improve the existing DRL-based AOD method by incorporating the inductive bias when learning the state representation. First, due to the partial observability, we use the gated recurrent unit to extract state representations from the observation sequence instead of the single-view observation. Second, we pre-decompose the scene with the Segment Anything Model (SAM) and filter out the irrelevant information with the derived masks. With these practices, the agent could learn an active viewing policy with better generalization capability. The effectiveness of our innovations is validated by the experiments on the UEVAVD dataset. Our dataset will soon be available at https://github.com/Leo000ooo/UEVAVD_dataset.