Abstract:Large language models (LLMs) sometimes demonstrate poor performance on knowledge-intensive tasks, commonsense reasoning is one of them. Researchers typically address these issues by retrieving related knowledge from knowledge graphs or employing self-enhancement methods to elicit knowledge in LLMs. However, noisy knowledge and invalid reasoning issues hamper their ability to answer questions accurately. To this end, we propose a novel method named eliciting, filtering and integrating knowledge in large language model (LINKED). In it, we design a reward model to filter out the noisy knowledge and take the marginal consistent reasoning module to reduce invalid reasoning. With our comprehensive experiments on two complex commonsense reasoning benchmarks, our method outperforms SOTA baselines (up to 9.0% improvement of accuracy). Besides, to measure the positive and negative impact of the injected knowledge, we propose a new metric called effectiveness-preservation score for the knowledge enhancement works. Finally, through extensive experiments, we conduct an in-depth analysis and find many meaningful conclusions about LLMs in commonsense reasoning tasks.
Abstract:Building Footprint Extraction (BFE) in off-nadir aerial images often relies on roof segmentation and roof-to-footprint offset prediction, then drugging roof-to-footprint via the offset. However, the results from this multi-stage inference are not applicable in data production, because of the low quality of masks given by prediction. To solve this problem, we proposed OBMv2 in this paper, which supports both end-to-end and promptable polygonal footprint prediction. Different from OBM, OBMv2 using a newly proposed Self Offset Attention (SOFA) to bridge the performance gap on bungalow and skyscraper, which realized a real end-to-end footprint polygon prediction without postprocessing. %, such as Non-Maximum Suppression (NMS) and Distance NMS (DNMS). % To fully use information contained in roof masks, building masks and offsets, we proposed a Multi-level Information SyStem (MISS) for footprint prediction, with which OBMv2 can predict footprints even with insufficient predictions. Additionally, to squeeze information from the same model, we were inspired by Retrieval-Augmented Generation (RAG) in Nature Language Processing and proposed "RAG in BFE" problem. To verify the effectiveness of the proposed method, experiments were conducted on open datasets BONAI and OmniCity-view3. A generalization test was also conducted on Huizhou test set. The code will be available at \url{https://github.com/likaiucas/OBM}.
Abstract:Multi-modal crowd counting is a crucial task that uses multi-modal cues to estimate the number of people in crowded scenes. To overcome the gap between different modalities, we propose a modal emulation-based two-pass multi-modal crowd-counting framework that enables efficient modal emulation, alignment, and fusion. The framework consists of two key components: a \emph{multi-modal inference} pass and a \emph{cross-modal emulation} pass. The former utilizes a hybrid cross-modal attention module to extract global and local information and achieve efficient multi-modal fusion. The latter uses attention prompting to coordinate different modalities and enhance multi-modal alignment. We also introduce a modality alignment module that uses an efficient modal consistency loss to align the outputs of the two passes and bridge the semantic gap between modalities. Extensive experiments on both RGB-Thermal and RGB-Depth counting datasets demonstrate its superior performance compared to previous methods. Code available at https://github.com/Mr-Monday/Multi-modal-Crowd-Counting-via-Modal-Emulation.
Abstract:Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images. This task is challenging due to the significant gap between these distinct modalities. In this paper, we propose a novel approach by introducing an auxiliary broker modality and on this basis frame the task as a triple-modal learning problem. We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models. Additionally, we identify and address the ghosting effect caused by direct cross-modal image fusion in multi-modal crowd counting. Through extensive experimental evaluations on popular multi-modal crowd-counting datasets, we demonstrate the effectiveness of our method, which introduces only 4 million additional parameters, yet achieves promising results. The code is available at https://github.com/HenryCilence/Broker-Modality-Crowd-Counting.
Abstract:Large language models (LLMs) inevitably memorize sensitive, copyrighted, and harmful knowledge from the training corpus; therefore, it is crucial to erase this knowledge from the models. Machine unlearning is a promising solution for efficiently removing specific knowledge by post hoc modifying models. In this paper, we propose a Real-World Knowledge Unlearning benchmark (RWKU) for LLM unlearning. RWKU is designed based on the following three key factors: (1) For the task setting, we consider a more practical and challenging unlearning setting, where neither the forget corpus nor the retain corpus is accessible. (2) For the knowledge source, we choose 200 real-world famous people as the unlearning targets and show that such popular knowledge is widely present in various LLMs. (3) For the evaluation framework, we design the forget set and the retain set to evaluate the model's capabilities across various real-world applications. Regarding the forget set, we provide four four membership inference attack (MIA) methods and nine kinds of adversarial attack probes to rigorously test unlearning efficacy. Regarding the retain set, we assess locality and utility in terms of neighbor perturbation, general ability, reasoning ability, truthfulness, factuality, and fluency. We conduct extensive experiments across two unlearning scenarios, two models and six baseline methods and obtain some meaningful findings. We release our benchmark and code publicly at http://rwku-bench.github.io for future work.
Abstract:Large Language Models (LLMs) have demonstrated amazing capabilities in language generation, text comprehension, and knowledge reasoning. While a single powerful model can already handle multiple tasks, relying on a single perspective can lead to biased and unstable results. Recent studies have further improved the model's reasoning ability on a wide range of tasks by introducing multi-model collaboration. However, models with different capabilities may produce conflicting answers on the same problem, and how to reasonably obtain the correct answer from multiple candidate models has become a challenging problem. In this paper, we propose the multi-model brainstorming based on prompt. It incorporates different models into a group for brainstorming, and after multiple rounds of reasoning elaboration and re-inference, a consensus answer is reached within the group. We conducted experiments on three different types of datasets, and demonstrate that the brainstorming can significantly improve the effectiveness in logical reasoning and fact extraction. Furthermore, we find that two small-parameter models can achieve accuracy approximating that of larger-parameter models through brainstorming, which provides a new solution for distributed deployment of LLMs.
Abstract:We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training. This approach capitalizes on the inherent superposition property of wireless channels, facilitating fast and scalable parameter aggregation. Meanwhile, it enhances the robustness of the model training process by dynamically adjusting the stepsize in accordance with the global gradient update. We derive the convergence rate of the training algorithms, encompassing the effects of channel fading and interference, for a broad spectrum of nonconvex loss functions. Our analysis shows that the AdaGrad-based algorithm converges to a stationary point at the rate of $\mathcal{O}( \ln{(T)} /{ T^{ 1 - \frac{1}{\alpha} } } )$, where $\alpha$ represents the tail index of the electromagnetic interference. This result indicates that the level of heavy-tailedness in interference distribution plays a crucial role in the training efficiency: the heavier the tail, the slower the algorithm converges. In contrast, an Adam-like algorithm converges at the $\mathcal{O}( 1/T )$ rate, demonstrating its advantage in expediting the model training process. We conduct extensive experiments that corroborate our theoretical findings and affirm the practical efficacy of our proposed federated adaptive gradient methods.
Abstract:With the development of deep learning, natural language processing technology has effectively improved the efficiency of various aspects of the traditional judicial industry. However, most current efforts focus solely on individual judicial stage, overlooking cross-stage collaboration. As the autonomous agents powered by large language models are becoming increasingly smart and able to make complex decisions in real-world settings, offering new insights for judicial intelligence. In this paper, (1) we introduce SimuCourt, a judicial benchmark that encompasses 420 judgment documents from real-world, spanning the three most common types of judicial cases, and a novel task Judicial Decision-Making to evaluate the judicial analysis and decision-making power of agents. To support this task, we construct a large-scale judicial knowledge base, JudicialKB, with multiple legal knowledge. (2) we propose a novel multi-agent framework, AgentsCourt. Our framework follows the real-world classic court trial process, consisting of court debate simulation, legal information retrieval and judgement refinement to simulate the decision-making of judge. (3) we perform extensive experiments, the results demonstrate that, our framework outperforms the existing advanced methods in various aspects, especially in generating legal grounds, where our model achieves significant improvements of 8.6% and 9.1% F1 score in the first and second instance settings, respectively.
Abstract:Large language models exhibit high-level commonsense reasoning abilities, especially with enhancement methods like Chain-of-Thought (CoT). However, we find these CoT-like methods lead to a considerable number of originally correct answers turning wrong, which we define as the Toxic CoT problem. To interpret and mitigate this problem, we first utilize attribution tracing and causal tracing methods to probe the internal working mechanism of the LLM during CoT reasoning. Through comparisons, we prove that the model exhibits information loss from the question over the shallow attention layers when generating rationales or answers. Based on the probing findings, we design a novel method called RIDERS (Residual decodIng and sERial-position Swap), which compensates for the information deficit in the model from both decoding and serial-position perspectives. Through extensive experiments on multiple commonsense reasoning benchmarks, we validate that this method not only significantly eliminates Toxic CoT problems (decreased by 23.6%), but also effectively improves the model's overall commonsense reasoning performance (increased by 5.5%).
Abstract:Frequent Directions, as a deterministic matrix sketching technique, has been proposed for tackling low-rank approximation problems. This method has a high degree of accuracy and practicality, but experiences a lot of computational cost for large-scale data. Several recent works on the randomized version of Frequent Directions greatly improve the computational efficiency, but unfortunately sacrifice some precision. To remedy such issue, this paper aims to find a more accurate projection subspace to further improve the efficiency and effectiveness of the existing Frequent Directions techniques. Specifically, by utilizing the power of Block Krylov Iteration and random projection technique, this paper presents a fast and accurate Frequent Directions algorithm named as r-BKIFD. The rigorous theoretical analysis shows that the proposed r-BKIFD has a comparable error bound with original Frequent Directions, and the approximation error can be arbitrarily small when the number of iterations is chosen appropriately. Extensive experimental results on both synthetic and real data further demonstrate the superiority of r-BKIFD over several popular Frequent Directions algorithms, both in terms of computational efficiency and accuracy.