Abstract:As knowledge and semantics on the web grow increasingly complex, enhancing Large Language Models (LLMs) comprehension and reasoning capabilities has become particularly important. Chain-of-Thought (CoT) prompting has been shown to enhance the reasoning capabilities of LLMs. However, it still falls short on logical reasoning tasks that rely on symbolic expressions and strict deductive rules. Neuro-symbolic methods address this gap by enforcing formal correctness through external solvers. Yet these solvers are highly format-sensitive, and small instabilities in model outputs can lead to frequent processing failures. LLM-driven approaches avoid parsing brittleness, but they lack structured representations and process-level error-correction mechanisms. To further enhance the logical reasoning capabilities of LLMs, we propose MatrixCoT, a structured CoT framework with a matrix-based plan. Specifically, we normalize and type natural language expressions, attach explicit citation fields, and introduce a matrix-based planning method to preserve global relations among steps. The plan becomes a verifiable artifact, making execution more stable. For verification, we also add a feedback-driven replanning mechanism. Under semantic-equivalence constraints, it identifies omissions and defects, rewrites and compresses the dependency matrix, and produces a more trustworthy final answer. Experiments on five logical-reasoning benchmarks and five LLMs show that, without relying on external solvers, MatrixCoT enhances both robustness and interpretability when tackling complex symbolic reasoning tasks, while maintaining competitive performance.
Abstract:With large language models demonstrating significant potential in code generation tasks, their application to onboard control of resource-constrained Unmanned Aerial Vehicles has emerged as an important research direction. However, a notable contradiction exists between the high resource consumption of large models and the real-time, lightweight requirements of UAV platforms. This paper proposes an integrated approach that combines knowledge distillation, chain-of-thought guidance, and supervised fine-tuning for UAV multi-SDK control tasks, aiming to efficiently transfer complex reasoning and code generation capabilities to smaller models. Firstly, a high-quality dataset covering various mainstream UAV SDKs is constructed, featuring instruction-code-reasoning chains, and incorporates counterfactual negative samples for data augmentation, guiding the model to learn the end-to-end logic from instruction parsing to code generation. Secondly, leveraging DeepSeek-Coder-V2-Lite quantized via QLoRA as the teacher model, and based on a hybrid black-box and white-box distillation strategy, high-quality chain-of-thought soft labels are generated. These are combined with a weighted cross-entropy loss using hard labels to transfer complex reasoning capabilities to the smaller student model. Finally, through prompt tuning engineering optimized for the UAV control scenario, the model performance on core tasks such as SDK type recognition and function call matching is enhanced. Experimental results indicate that the distilled lightweight model maintains high code generation accuracy while achieving significant improvements in deployment and inference efficiency, effectively demonstrating the feasibility and superiority of our approach in achieving precise and lightweight intelligent control for UAVs
Abstract:The demand for real-time visual understanding and interaction in complex scenarios is increasingly critical for unmanned aerial vehicles. However, a significant challenge arises from the contradiction between the high computational cost of large Vision language models and the limited computing resources available on UAV edge devices. To address this challenge, this paper proposes a lightweight multimodal task platform based on BLIP-2, integrated with YOLO-World and YOLOv8-Seg models. This integration extends the multi-task capabilities of BLIP-2 for UAV applications with minimal adaptation and without requiring task-specific fine-tuning on drone data. Firstly, the deep integration of BLIP-2 with YOLO models enables it to leverage the precise perceptual results of YOLO for fundamental tasks like object detection and instance segmentation, thereby facilitating deeper visual-attention understanding and reasoning. Secondly, a content-aware key frame sampling mechanism based on K-Means clustering is designed, which incorporates intelligent frame selection and temporal feature concatenation. This equips the lightweight BLIP-2 architecture with the capability to handle video-level interactive tasks effectively. Thirdly, a unified prompt optimization scheme for multi-task adaptation is implemented. This scheme strategically injects structured event logs from the YOLO models as contextual information into BLIP-2's input. Combined with output constraints designed to filter out technical details, this approach effectively guides the model to generate accurate and contextually relevant outputs for various tasks.
Abstract:Benefiting from the rapid advancements in large language models (LLMs), human-drone interaction has reached unprecedented opportunities. In this paper, we propose a method that integrates a fine-tuned CodeT5 model with the Unreal Engine-based AirSim drone simulator to efficiently execute multi-task operations using natural language commands. This approach enables users to interact with simulated drones through prompts or command descriptions, allowing them to easily access and control the drone's status, significantly lowering the operational threshold. In the AirSim simulator, we can flexibly construct visually realistic dynamic environments to simulate drone applications in complex scenarios. By combining a large dataset of (natural language, program code) command-execution pairs generated by ChatGPT with developer-written drone code as training data, we fine-tune the CodeT5 to achieve automated translation from natural language to executable code for drone tasks. Experimental results demonstrate that the proposed method exhibits superior task execution efficiency and command understanding capabilities in simulated environments. In the future, we plan to extend the model functionality in a modular manner, enhancing its adaptability to complex scenarios and driving the application of drone technologies in real-world environments.
Abstract:This paper presents a method for estimating significant wave height (Hs) from sparse S_pectral P_oint using a T_ransformer-based approach (SPT). Based on empirical observations that only a minority of spectral points with strong power contribute to wave energy, the proposed SPT effectively integrates geometric and spectral characteristics of ocean surface waves to estimate Hs through multi-dimensional feature representation. The experiment reveals an intriguing phenomenon: the learned features of SPT align well with physical dispersion relations, where the contribution-score map of selected points is concentrated along dispersion curves. Compared to conventional vision networks that process image sequences and full spectra, SPT demonstrates superior performance in Hs regression while consuming significantly fewer computational resources. On a consumer-grade GPU, SPT completes the training of regression model for 1080 sea clutter image sequences within 4 minutes, showcasing its potential to reduce deployment costs for radar wave-measuring systems. The open-source implementation of SPT will be available at https://github.com/joeyee/spt




Abstract:Cutting-edge agentic AI systems are built on foundation models that can be adapted to plan, reason, and interact with external tools to perform increasingly complex and specialized tasks. As these systems grow in capability and scope, adaptation becomes a central mechanism for improving performance, reliability, and generalization. In this paper, we unify the rapidly expanding research landscape into a systematic framework that spans both agent adaptations and tool adaptations. We further decompose these into tool-execution-signaled and agent-output-signaled forms of agent adaptation, as well as agent-agnostic and agent-supervised forms of tool adaptation. We demonstrate that this framework helps clarify the design space of adaptation strategies in agentic AI, makes their trade-offs explicit, and provides practical guidance for selecting or switching among strategies during system design. We then review the representative approaches in each category, analyze their strengths and limitations, and highlight key open challenges and future opportunities. Overall, this paper aims to offer a conceptual foundation and practical roadmap for researchers and practitioners seeking to build more capable, efficient, and reliable agentic AI systems.
Abstract:LLMs have recently demonstrated strong potential in simulating online shopper behavior. Prior work has improved action prediction by applying SFT on action traces with LLM-generated rationales, and by leveraging RL to further enhance reasoning capabilities. Despite these advances, current approaches rely on text-based inputs and overlook the essential role of visual perception in shaping human decision-making during web GUI interactions. In this paper, we investigate the integration of visual information, specifically webpage screenshots, into behavior simulation via VLMs, leveraging OPeRA dataset. By grounding agent decision-making in both textual and visual modalities, we aim to narrow the gap between synthetic agents and real-world users, thereby enabling more cognitively aligned simulations of online shopping behavior. Specifically, we employ SFT for joint action prediction and rationale generation, conditioning on the full interaction context, which comprises action history, past HTML observations, and the current webpage screenshot. To further enhance reasoning capabilities, we integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor that prioritizes challenging decision points. Empirically, our studies show that incorporating visual grounding yields substantial gains: the combination of text and image inputs improves exact match accuracy by more than 6% over text-only inputs. These results indicate that multi-modal grounding not only boosts predictive accuracy but also enhances simulation fidelity in visually complex environments, which captures nuances of human attention and decision-making that text-only agents often miss. Finally, we revisit the design space of behavior simulation frameworks, identify key methodological limitations, and propose future research directions toward building efficient and effective human behavior simulators.




Abstract:Code generation agents powered by large language models (LLMs) are revolutionizing the software development paradigm. Distinct from previous code generation techniques, code generation agents are characterized by three core features. 1) Autonomy: the ability to independently manage the entire workflow, from task decomposition to coding and debugging. 2) Expanded task scope: capabilities that extend beyond generating code snippets to encompass the full software development lifecycle (SDLC). 3) Enhancement of engineering practicality: a shift in research emphasis from algorithmic innovation toward practical engineering challenges, such as system reliability, process management, and tool integration. This domain has recently witnessed rapid development and an explosion in research, demonstrating significant application potential. This paper presents a systematic survey of the field of LLM-based code generation agents. We trace the technology's developmental trajectory from its inception and systematically categorize its core techniques, including both single-agent and multi-agent architectures. Furthermore, this survey details the applications of LLM-based agents across the full SDLC, summarizes mainstream evaluation benchmarks and metrics, and catalogs representative tools. Finally, by analyzing the primary challenges, we identify and propose several foundational, long-term research directions for the future work of the field.




Abstract:Large Language Models (LLMs) have recently demonstrated strong potential in generating 'believable human-like' behavior in web environments. Prior work has explored augmenting training data with LLM-synthesized rationales and applying supervised fine-tuning (SFT) to enhance reasoning ability, which in turn can improve downstream action prediction. However, the performance of such approaches remains inherently bounded by the reasoning capabilities of the model used to generate the rationales. In this paper, we introduce Shop-R1, a novel reinforcement learning (RL) framework aimed at enhancing the reasoning ability of LLMs for simulation of real human behavior in online shopping environments Specifically, Shop-R1 decomposes the human behavior simulation task into two stages: rationale generation and action prediction, each guided by distinct reward signals. For rationale generation, we leverage internal model signals (e.g., logit distributions) to guide the reasoning process in a self-supervised manner. For action prediction, we propose a hierarchical reward structure with difficulty-aware scaling to prevent reward hacking and enable fine-grained reward assignment. This design evaluates both high-level action types and the correctness of fine-grained sub-action details (attributes and values), rewarding outputs proportionally to their difficulty. Experimental results show that our method achieves a relative improvement of over 65% compared to the baseline.




Abstract:Can large language models (LLMs) accurately simulate the next web action of a specific user? While LLMs have shown promising capabilities in generating ``believable'' human behaviors, evaluating their ability to mimic real user behaviors remains an open challenge, largely due to the lack of high-quality, publicly available datasets that capture both the observable actions and the internal reasoning of an actual human user. To address this gap, we introduce OPERA, a novel dataset of Observation, Persona, Rationale, and Action collected from real human participants during online shopping sessions. OPERA is the first public dataset that comprehensively captures: user personas, browser observations, fine-grained web actions, and self-reported just-in-time rationales. We developed both an online questionnaire and a custom browser plugin to gather this dataset with high fidelity. Using OPERA, we establish the first benchmark to evaluate how well current LLMs can predict a specific user's next action and rationale with a given persona and <observation, action, rationale> history. This dataset lays the groundwork for future research into LLM agents that aim to act as personalized digital twins for human.