Abstract:Class-incremental Learning (CIL) in Time Series Classification (TSC) aims to incrementally train models using the streaming time series data that arrives continuously. The main problem in this scenario is catastrophic forgetting, i.e., training models with new samples inevitably leads to the forgetting of previously learned knowledge. Among existing methods, the replay-based methods achieve satisfactory performance but compromise privacy, while exemplar-free methods protect privacy but suffer from low accuracy. However, more critically, owing to their reliance on gradient-based update techniques, these existing methods fundamentally cannot solve the catastrophic forgetting problem. In TSC scenarios with continuously arriving data and temporally shifting distributions, these methods become even less practical. In this paper, we propose a Time Series Analytic Continual Learning framework, called TS-ACL. Inspired by analytical learning, TS-ACL transforms neural network updates into gradient-free linear regression problems, thereby fundamentally mitigating catastrophic forgetting. Specifically, employing a pre-trained and frozen feature extraction encoder, TS-ACL only needs to update its analytic classifier recursively in a lightweight manner that is highly suitable for real-time applications and large-scale data processing. Additionally, we theoretically demonstrate that the model obtained recursively through the TS-ACL is exactly equivalent to a model trained on the complete dataset in a centralized manner, thereby establishing the property of absolute knowledge memory. Extensive experiments validate the superior performance of our TS-ACL.
Abstract:With the rapid development of the satellite industry, the information transmission network based on communication satellites has gradually become a major and important part of the future satellite ground integration network. However, the low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system and needs to be solved urgently. Effectively planning the task of satellite ground networking by reasonably scheduling resources is crucial for the efficient transmission of task data. In this paper, we hope to provide a task execution scheme that maximizes the profit of the networking task for satellite ground network planning considering feeding mode (SGNPFM). To solve the SGNPFM problem, a mixed-integer planning model with the objective of maximizing the gain of the link-building task is constructed, which considers various constraints of the satellite in the feed-switching mode. Based on the problem characteristics, we propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks. To obtain more high-quality solutions, different similarity evaluation methods are designed to assist the algorithm in intelligently screening individuals. The DSGA also uses an adaptive crossover strategy based on similarity mechanism, which guides the algorithm to achieve efficient population search. In addition, a task scheduling algorithm considering the feed-switching mode is designed for decoding the algorithm to generate a high-quality scheme. The results of simulation experiments show that the DSGA can effectively solve the SGNPFM problem.
Abstract:Data augmentation has proven to be a vital tool for enhancing the generalization capabilities of deep learning models, especially in the context of 3D vision where traditional datasets are often limited. Despite previous advancements, existing methods primarily cater to unimodal data scenarios, leaving a gap in the augmentation of multimodal triplet data, which integrates text, images, and point clouds. Simultaneously augmenting all three modalities enhances diversity and improves alignment across modalities, resulting in more comprehensive and robust 3D representations. To address this gap, we propose TripletMix, a novel approach to address the previously unexplored issue of multimodal data augmentation in 3D understanding. TripletMix innovatively applies the principles of mixed-based augmentation to multimodal triplet data, allowing for the preservation and optimization of cross-modal connections. Our proposed TripletMix combines feature-level and input-level augmentations to achieve dual enhancement between raw data and latent features, significantly improving the model's cross-modal understanding and generalization capabilities by ensuring feature consistency and providing diverse and realistic training samples. We demonstrate that TripletMix not only improves the baseline performance of models in various learning scenarios including zero-shot and linear probing classification but also significantly enhances model generalizability. Notably, we improved the zero-shot classification accuracy on ScanObjectNN from 51.3 percent to 61.9 percent, and on Objaverse-LVIS from 46.8 percent to 51.4 percent. Our findings highlight the potential of multimodal data augmentation to significantly advance 3D object recognition and understanding.
Abstract:Data augmentation is an effective regularization strategy for mitigating overfitting in deep neural networks, and it plays a crucial role in 3D vision tasks, where the point cloud data is relatively limited. While mixing-based augmentation has shown promise for point clouds, previous methods mix point clouds either on block level or point level, which has constrained their ability to strike a balance between generating diverse training samples and preserving the local characteristics of point clouds. Additionally, the varying importance of each part of the point clouds has not been fully considered, cause not all parts contribute equally to the classification task, and some parts may contain unimportant or redundant information. To overcome these challenges, we propose PointPatchMix, a novel approach that mixes point clouds at the patch level and integrates a patch scoring module to generate content-based targets for mixed point clouds. Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model. We evaluate PointPatchMix on two benchmark datasets, ModelNet40 and ScanObjectNN, and demonstrate significant improvements over various baselines in both synthetic and real-world datasets, as well as few-shot settings. With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40. Furthermore, our approach shows strong generalization across multiple architectures and enhances the robustness of the baseline model.
Abstract:Mobile CrowdSensing (MCS), through employing considerable workers to sense and collect data in a participatory manner, has been recognized as a promising paradigm for building many large-scale applications in a cost-effective way, such as combating COVID-19. The recruitment of trustworthy and high-quality workers is an important research issue for MCS. Previous studies assume that the qualities of workers are known in advance, or the platform knows the qualities of workers once it receives their collected data. In reality, to reduce their costs and thus maximize revenue, many strategic workers do not perform their sensing tasks honestly and report fake data to the platform. So, it is very hard for the platform to evaluate the authenticity of the received data. In this paper, an incentive mechanism named Semi-supervision based Combinatorial Multi-Armed Bandit reverse Auction (SCMABA) is proposed to solve the recruitment problem of multiple unknown and strategic workers in MCS. First, we model the worker recruitment as a multi-armed bandit reverse auction problem, and design an UCB-based algorithm to separate the exploration and exploitation, considering the Sensing Rates (SRs) of recruited workers as the gain of the bandit. Next, a Semi-supervised Sensing Rate Learning (SSRL) approach is proposed to quickly and accurately obtain the workers' SRs, which consists of two phases, supervision and self-supervision. Last, SCMABA is designed organically combining the SRs acquisition mechanism with multi-armed bandit reverse auction, where supervised SR learning is used in the exploration, and the self-supervised one is used in the exploitation. We prove that our SCMABA achieves truthfulness and individual rationality. Additionally, we exhibit outstanding performances of the SCMABA mechanism through in-depth simulations of real-world data traces.