Abstract:Concept Bottleneck Models (CBMs) enhance model interpretability by introducing human-understandable concepts within the architecture. However, existing CBMs assume static datasets, limiting their ability to adapt to real-world, continuously evolving data streams. To address this, we define a novel concept-incremental and class-incremental continual learning task for CBMs, enabling models to accumulate new concepts and classes over time while retaining previously learned knowledge. To achieve this, we propose CONceptual Continual Incremental Learning (CONCIL), a framework that prevents catastrophic forgetting by reformulating concept and decision layer updates as linear regression problems, thus eliminating the need for gradient-based updates. CONCIL requires only recursive matrix operations, making it computationally efficient and suitable for real-time and large-scale data applications. Experimental results demonstrate that CONCIL achieves "absolute knowledge memory" and outperforms traditional CBM methods in concept- and class-incremental settings, establishing a new benchmark for continual learning in CBMs.
Abstract:The increasing complexity of AI models, especially in deep learning, has raised concerns about transparency and accountability, particularly in high-stakes applications like medical diagnostics, where opaque models can undermine trust. Explainable Artificial Intelligence (XAI) aims to address these issues by providing clear, interpretable models. Among XAI techniques, Concept Bottleneck Models (CBMs) enhance transparency by using high-level semantic concepts. However, CBMs are vulnerable to concept-level backdoor attacks, which inject hidden triggers into these concepts, leading to undetectable anomalous behavior. To address this critical security gap, we introduce ConceptGuard, a novel defense framework specifically designed to protect CBMs from concept-level backdoor attacks. ConceptGuard employs a multi-stage approach, including concept clustering based on text distance measurements and a voting mechanism among classifiers trained on different concept subgroups, to isolate and mitigate potential triggers. Our contributions are threefold: (i) we present ConceptGuard as the first defense mechanism tailored for concept-level backdoor attacks in CBMs; (ii) we provide theoretical guarantees that ConceptGuard can effectively defend against such attacks within a certain trigger size threshold, ensuring robustness; and (iii) we demonstrate that ConceptGuard maintains the high performance and interpretability of CBMs, crucial for trustworthiness. Through comprehensive experiments and theoretical proofs, we show that ConceptGuard significantly enhances the security and trustworthiness of CBMs, paving the way for their secure deployment in critical applications.
Abstract:Adapting machine learning models to new domains without labeled data, especially when source data is inaccessible, is a critical challenge in applications like medical imaging, autonomous driving, and remote sensing. This task, known as Source-Free Unsupervised Domain Adaptation (SFUDA), involves adapting a pre-trained model to a target domain using only unlabeled target data, which can lead to issues such as overfitting, underfitting, and poor generalization due to domain discrepancies and noise. Existing SFUDA methods often rely on single-model architectures, struggling with uncertainty and variability in the target domain. To address these challenges, we propose DRIVE (Dual-Robustness through Information Variability and Entropy), a novel SFUDA framework leveraging a dual-model architecture. The two models, initialized with identical weights, work in parallel to capture diverse target domain characteristics. One model is exposed to perturbations via projection gradient descent (PGD) guided by mutual information, focusing on high-uncertainty regions. We also introduce an entropy-aware pseudo-labeling strategy that adjusts label weights based on prediction uncertainty, ensuring the model focuses on reliable data while avoiding noisy regions. The adaptation process has two stages: the first aligns the models on stable features using a mutual information consistency loss, and the second dynamically adjusts the perturbation level based on the loss from the first stage, encouraging the model to explore a broader range of the target domain while preserving existing performance. This enhances generalization capabilities and robustness against interference. Evaluations on standard SFUDA benchmarks show that DRIVE consistently outperforms previous methods, delivering improved adaptation accuracy and stability across complex target domains.
Abstract:The lack of interpretability in the field of medical image analysis has significant ethical and legal implications. Existing interpretable methods in this domain encounter several challenges, including dependency on specific models, difficulties in understanding and visualization, as well as issues related to efficiency. To address these limitations, we propose a novel framework called Med-MICN (Medical Multi-dimensional Interpretable Concept Network). Med-MICN provides interpretability alignment for various angles, including neural symbolic reasoning, concept semantics, and saliency maps, which are superior to current interpretable methods. Its advantages include high prediction accuracy, interpretability across multiple dimensions, and automation through an end-to-end concept labeling process that reduces the need for extensive human training effort when working with new datasets. To demonstrate the effectiveness and interpretability of Med-MICN, we apply it to four benchmark datasets and compare it with baselines. The results clearly demonstrate the superior performance and interpretability of our Med-MICN.
Abstract:Large Language Models (LLMs) are powerful tools for text generation, translation, and summarization, but they often suffer from hallucinations-instances where they fail to maintain the fidelity and coherence of contextual information during decoding, sometimes overlooking critical details due to their sampling strategies and inherent biases from training data and fine-tuning discrepancies. These hallucinations can propagate through the web, affecting the trustworthiness of information disseminated online. To address this issue, we propose a novel decoding strategy that leverages absorbing Markov chains to quantify the significance of contextual information and measure the extent of information loss during generation. By considering all possible paths from the first to the last token, our approach enhances the reliability of model outputs without requiring additional training or external data. Evaluations on datasets including TruthfulQA, FACTOR, and HaluEval highlight the superior performance of our method in mitigating hallucinations, underscoring the necessity of ensuring accurate information flow in web-based applications.
Abstract:Class-incremental Learning (CIL) in Time Series Classification (TSC) aims to incrementally train models using the streaming time series data that arrives continuously. The main problem in this scenario is catastrophic forgetting, i.e., training models with new samples inevitably leads to the forgetting of previously learned knowledge. Among existing methods, the replay-based methods achieve satisfactory performance but compromise privacy, while exemplar-free methods protect privacy but suffer from low accuracy. However, more critically, owing to their reliance on gradient-based update techniques, these existing methods fundamentally cannot solve the catastrophic forgetting problem. In TSC scenarios with continuously arriving data and temporally shifting distributions, these methods become even less practical. In this paper, we propose a Time Series Analytic Continual Learning framework, called TS-ACL. Inspired by analytical learning, TS-ACL transforms neural network updates into gradient-free linear regression problems, thereby fundamentally mitigating catastrophic forgetting. Specifically, employing a pre-trained and frozen feature extraction encoder, TS-ACL only needs to update its analytic classifier recursively in a lightweight manner that is highly suitable for real-time applications and large-scale data processing. Additionally, we theoretically demonstrate that the model obtained recursively through the TS-ACL is exactly equivalent to a model trained on the complete dataset in a centralized manner, thereby establishing the property of absolute knowledge memory. Extensive experiments validate the superior performance of our TS-ACL.
Abstract:In the rapidly evolving field of deep learning, specialized models have driven significant advancements in tasks such as computer vision and natural language processing. However, this specialization leads to a fragmented ecosystem where models lack the adaptability for broader applications. To overcome this, we introduce AutoFusion, an innovative framework that fuses distinct model parameters(with the same architecture) for multi-task learning without pre-trained checkpoints. Using an unsupervised, end-to-end approach, AutoFusion dynamically permutes model parameters at each layer, optimizing the combination through a loss-minimization process that does not require labeled data. We validate AutoFusion's effectiveness through experiments on commonly used benchmark datasets, demonstrating superior performance over established methods like Weight Interpolation, Git Re-Basin, and ZipIt. Our framework offers a scalable and flexible solution for model integration, positioning it as a powerful tool for future research and practical applications.
Abstract:Despite the transformative impact of deep learning across multiple domains, the inherent opacity of these models has driven the development of Explainable Artificial Intelligence (XAI). Among these efforts, Concept Bottleneck Models (CBMs) have emerged as a key approach to improve interpretability by leveraging high-level semantic information. However, CBMs, like other machine learning models, are susceptible to security threats, particularly backdoor attacks, which can covertly manipulate model behaviors. Understanding that the community has not yet studied the concept level backdoor attack of CBM, because of "Better the devil you know than the devil you don't know.", we introduce CAT (Concept-level Backdoor ATtacks), a methodology that leverages the conceptual representations within CBMs to embed triggers during training, enabling controlled manipulation of model predictions at inference time. An enhanced attack pattern, CAT+, incorporates a correlation function to systematically select the most effective and stealthy concept triggers, thereby optimizing the attack's impact. Our comprehensive evaluation framework assesses both the attack success rate and stealthiness, demonstrating that CAT and CAT+ maintain high performance on clean data while achieving significant targeted effects on backdoored datasets. This work underscores the potential security risks associated with CBMs and provides a robust testing methodology for future security assessments.
Abstract:Recent advancements in autonomous driving have seen a paradigm shift towards end-to-end learning paradigms, which map sensory inputs directly to driving actions, thereby enhancing the robustness and adaptability of autonomous vehicles. However, these models often sacrifice interpretability, posing significant challenges to trust, safety, and regulatory compliance. To address these issues, we introduce DRIVE -- Dependable Robust Interpretable Visionary Ensemble Framework in Autonomous Driving, a comprehensive framework designed to improve the dependability and stability of explanations in end-to-end unsupervised autonomous driving models. Our work specifically targets the inherent instability problems observed in the Driving through the Concept Gridlock (DCG) model, which undermine the trustworthiness of its explanations and decision-making processes. We define four key attributes of DRIVE: consistent interpretability, stable interpretability, consistent output, and stable output. These attributes collectively ensure that explanations remain reliable and robust across different scenarios and perturbations. Through extensive empirical evaluations, we demonstrate the effectiveness of our framework in enhancing the stability and dependability of explanations, thereby addressing the limitations of current models. Our contributions include an in-depth analysis of the dependability issues within the DCG model, a rigorous definition of DRIVE with its fundamental properties, a framework to implement DRIVE, and novel metrics for evaluating the dependability of concept-based explainable autonomous driving models. These advancements lay the groundwork for the development of more reliable and trusted autonomous driving systems, paving the way for their broader acceptance and deployment in real-world applications.
Abstract:Fine-grained image classification has witnessed significant advancements with the advent of deep learning and computer vision technologies. However, the scarcity of detailed annotations remains a major challenge, especially in scenarios where obtaining high-quality labeled data is costly or time-consuming. To address this limitation, we introduce Precision-Enhanced Pseudo-Labeling(PEPL) approach specifically designed for fine-grained image classification within a semi-supervised learning framework. Our method leverages the abundance of unlabeled data by generating high-quality pseudo-labels that are progressively refined through two key phases: initial pseudo-label generation and semantic-mixed pseudo-label generation. These phases utilize Class Activation Maps (CAMs) to accurately estimate the semantic content and generate refined labels that capture the essential details necessary for fine-grained classification. By focusing on semantic-level information, our approach effectively addresses the limitations of standard data augmentation and image-mixing techniques in preserving critical fine-grained features. We achieve state-of-the-art performance on benchmark datasets, demonstrating significant improvements over existing semi-supervised strategies, with notable boosts in accuracy and robustness.Our code has been open sourced at https://github.com/TianSuya/SemiFG.