Abstract:In neural video codecs, current state-of-the-art methods typically adopt multi-scale motion compensation to handle diverse motions. These methods estimate and compress either optical flow or deformable offsets to reduce inter-frame redundancy. However, flow-based methods often suffer from inaccurate motion estimation in complicated scenes. Deformable convolution-based methods are more robust but have a higher bit cost for motion coding. In this paper, we propose a hybrid context generation module, which combines the advantages of the above methods in an optimal way and achieves accurate compensation at a low bit cost. Specifically, considering the characteristics of features at different scales, we adopt flow-guided deformable compensation at largest-scale to produce accurate alignment in detailed regions. For smaller-scale features, we perform flow-based warping to save the bit cost for motion coding. Furthermore, we design a local-global context enhancement module to fully explore the local-global information of previous reconstructed signals. Experimental results demonstrate that our proposed Hybrid Local-Global Context learning (HLGC) method can significantly enhance the state-of-the-art methods on standard test datasets.
Abstract:Concept Bottleneck Models (CBMs) enhance model interpretability by introducing human-understandable concepts within the architecture. However, existing CBMs assume static datasets, limiting their ability to adapt to real-world, continuously evolving data streams. To address this, we define a novel concept-incremental and class-incremental continual learning task for CBMs, enabling models to accumulate new concepts and classes over time while retaining previously learned knowledge. To achieve this, we propose CONceptual Continual Incremental Learning (CONCIL), a framework that prevents catastrophic forgetting by reformulating concept and decision layer updates as linear regression problems, thus eliminating the need for gradient-based updates. CONCIL requires only recursive matrix operations, making it computationally efficient and suitable for real-time and large-scale data applications. Experimental results demonstrate that CONCIL achieves "absolute knowledge memory" and outperforms traditional CBM methods in concept- and class-incremental settings, establishing a new benchmark for continual learning in CBMs.
Abstract:The increasing complexity of AI models, especially in deep learning, has raised concerns about transparency and accountability, particularly in high-stakes applications like medical diagnostics, where opaque models can undermine trust. Explainable Artificial Intelligence (XAI) aims to address these issues by providing clear, interpretable models. Among XAI techniques, Concept Bottleneck Models (CBMs) enhance transparency by using high-level semantic concepts. However, CBMs are vulnerable to concept-level backdoor attacks, which inject hidden triggers into these concepts, leading to undetectable anomalous behavior. To address this critical security gap, we introduce ConceptGuard, a novel defense framework specifically designed to protect CBMs from concept-level backdoor attacks. ConceptGuard employs a multi-stage approach, including concept clustering based on text distance measurements and a voting mechanism among classifiers trained on different concept subgroups, to isolate and mitigate potential triggers. Our contributions are threefold: (i) we present ConceptGuard as the first defense mechanism tailored for concept-level backdoor attacks in CBMs; (ii) we provide theoretical guarantees that ConceptGuard can effectively defend against such attacks within a certain trigger size threshold, ensuring robustness; and (iii) we demonstrate that ConceptGuard maintains the high performance and interpretability of CBMs, crucial for trustworthiness. Through comprehensive experiments and theoretical proofs, we show that ConceptGuard significantly enhances the security and trustworthiness of CBMs, paving the way for their secure deployment in critical applications.
Abstract:Large Language Models (LLMs) are powerful tools for text generation, translation, and summarization, but they often suffer from hallucinations-instances where they fail to maintain the fidelity and coherence of contextual information during decoding, sometimes overlooking critical details due to their sampling strategies and inherent biases from training data and fine-tuning discrepancies. These hallucinations can propagate through the web, affecting the trustworthiness of information disseminated online. To address this issue, we propose a novel decoding strategy that leverages absorbing Markov chains to quantify the significance of contextual information and measure the extent of information loss during generation. By considering all possible paths from the first to the last token, our approach enhances the reliability of model outputs without requiring additional training or external data. Evaluations on datasets including TruthfulQA, FACTOR, and HaluEval highlight the superior performance of our method in mitigating hallucinations, underscoring the necessity of ensuring accurate information flow in web-based applications.
Abstract:Despite the transformative impact of deep learning across multiple domains, the inherent opacity of these models has driven the development of Explainable Artificial Intelligence (XAI). Among these efforts, Concept Bottleneck Models (CBMs) have emerged as a key approach to improve interpretability by leveraging high-level semantic information. However, CBMs, like other machine learning models, are susceptible to security threats, particularly backdoor attacks, which can covertly manipulate model behaviors. Understanding that the community has not yet studied the concept level backdoor attack of CBM, because of "Better the devil you know than the devil you don't know.", we introduce CAT (Concept-level Backdoor ATtacks), a methodology that leverages the conceptual representations within CBMs to embed triggers during training, enabling controlled manipulation of model predictions at inference time. An enhanced attack pattern, CAT+, incorporates a correlation function to systematically select the most effective and stealthy concept triggers, thereby optimizing the attack's impact. Our comprehensive evaluation framework assesses both the attack success rate and stealthiness, demonstrating that CAT and CAT+ maintain high performance on clean data while achieving significant targeted effects on backdoored datasets. This work underscores the potential security risks associated with CBMs and provides a robust testing methodology for future security assessments.
Abstract:This paper presents a learned video compression method in response to video compression track of the 6th Challenge on Learned Image Compression (CLIC), at DCC 2024.Specifically, we propose a unified contextual video compression framework (UCVC) for joint P-frame and B-frame coding. Each non-intra frame refers to two neighboring decoded frames, which can be either both from the past for P-frame compression, or one from the past and one from the future for B-frame compression. In training stage, the model parameters are jointly optimized with both P-frames and B-frames. Benefiting from the designs, the framework can support both P-frame and B-frame coding and achieve comparable compression efficiency with that specifically designed for P-frame or B-frame.As for challenge submission, we report the optimal compression efficiency by selecting appropriate frame types for each test sequence. Our team name is PKUSZ-LVC.
Abstract:Given a single image of a 3D object, this paper proposes a novel method (named ConsistNet) that is able to generate multiple images of the same object, as if seen they are captured from different viewpoints, while the 3D (multi-view) consistencies among those multiple generated images are effectively exploited. Central to our method is a multi-view consistency block which enables information exchange across multiple single-view diffusion processes based on the underlying multi-view geometry principles. ConsistNet is an extension to the standard latent diffusion model, and consists of two sub-modules: (a) a view aggregation module that unprojects multi-view features into global 3D volumes and infer consistency, and (b) a ray aggregation module that samples and aggregate 3D consistent features back to each view to enforce consistency. Our approach departs from previous methods in multi-view image generation, in that it can be easily dropped-in pre-trained LDMs without requiring explicit pixel correspondences or depth prediction. Experiments show that our method effectively learns 3D consistency over a frozen Zero123 backbone and can generate 16 surrounding views of the object within 40 seconds on a single A100 GPU. Our code will be made available on https://github.com/JiayuYANG/ConsistNet
Abstract:Real-time Stereo Matching is a cornerstone algorithm for many Extended Reality (XR) applications, such as indoor 3D understanding, video pass-through, and mixed-reality games. Despite significant advancements in deep stereo methods, achieving real-time depth inference with high accuracy on a low-power device remains a major challenge. One of the major difficulties is the lack of high-quality indoor video stereo training datasets captured by head-mounted VR/AR glasses. To address this issue, we introduce a novel video stereo synthetic dataset that comprises photorealistic renderings of various indoor scenes and realistic camera motion captured by a 6-DoF moving VR/AR head-mounted display (HMD). This facilitates the evaluation of existing approaches and promotes further research on indoor augmented reality scenarios. Our newly proposed dataset enables us to develop a novel framework for continuous video-rate stereo matching. As another contribution, our dataset enables us to proposed a new video-based stereo matching approach tailored for XR applications, which achieves real-time inference at an impressive 134fps on a standard desktop computer, or 30fps on a battery-powered HMD. Our key insight is that disparity and contextual information are highly correlated and redundant between consecutive stereo frames. By unrolling an iterative cost aggregation in time (i.e. in the temporal dimension), we are able to distribute and reuse the aggregated features over time. This approach leads to a substantial reduction in computation without sacrificing accuracy. We conducted extensive evaluations and comparisons and demonstrated that our method achieves superior performance compared to the current state-of-the-art, making it a strong contender for real-time stereo matching in VR/AR applications.
Abstract:Recent vision-only perception models for autonomous driving achieved promising results by encoding multi-view image features into Bird's-Eye-View (BEV) space. A critical step and the main bottleneck of these methods is transforming image features into the BEV coordinate frame. This paper focuses on leveraging geometry information, such as depth, to model such feature transformation. Existing works rely on non-parametric depth distribution modeling leading to significant memory consumption, or ignore the geometry information to address this problem. In contrast, we propose to use parametric depth distribution modeling for feature transformation. We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view. Then, we aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame. Finally, we use the transformed features for downstream tasks such as object detection and semantic segmentation. Existing semantic segmentation methods do also suffer from an hallucination problem as they do not take visibility information into account. This hallucination can be particularly problematic for subsequent modules such as control and planning. To mitigate the issue, our method provides depth uncertainty and reliable visibility-aware estimations. We further leverage our parametric depth modeling to present a novel visibility-aware evaluation metric that, when taken into account, can mitigate the hallucination problem. Extensive experiments on object detection and semantic segmentation on the nuScenes datasets demonstrate that our method outperforms existing methods on both tasks.
Abstract:Using more reference frames can significantly improve the compression efficiency in neural video compression. However, in low-latency scenarios, most existing neural video compression frameworks usually use the previous one frame as reference. Or a few frameworks which use the previous multiple frames as reference only adopt a simple multi-reference frames propagation mechanism. In this paper, we present a more reasonable multi-reference frames propagation mechanism for neural video compression, called butterfly multi-reference frame propagation mechanism (Butterfly), which allows a more effective feature fusion of multi-reference frames. By this, we can generate more accurate temporal context conditional prior for Contextual Coding Module. Besides, when the number of decoded frames does not meet the required number of reference frames, we duplicate the nearest reference frame to achieve the requirement, which is better than duplicating the furthest one. Experiment results show that our method can significantly outperform the previous state-of-the-art (SOTA), and our neural codec can achieve -7.6% bitrate save on HEVC Class D dataset when compares with our base single-reference frame model with the same compression configuration.