Abstract:This paper presents a learned video compression method in response to video compression track of the 6th Challenge on Learned Image Compression (CLIC), at DCC 2024.Specifically, we propose a unified contextual video compression framework (UCVC) for joint P-frame and B-frame coding. Each non-intra frame refers to two neighboring decoded frames, which can be either both from the past for P-frame compression, or one from the past and one from the future for B-frame compression. In training stage, the model parameters are jointly optimized with both P-frames and B-frames. Benefiting from the designs, the framework can support both P-frame and B-frame coding and achieve comparable compression efficiency with that specifically designed for P-frame or B-frame.As for challenge submission, we report the optimal compression efficiency by selecting appropriate frame types for each test sequence. Our team name is PKUSZ-LVC.
Abstract:This one page paper describes our method for the track of image compression. To achieve better perceptual quality, we use the adversarial loss to generate realistic textures, use region of interest (ROI) mask to guide the bit allocation for different regions. Our Team name is TLIC.
Abstract:Recently, learned image compression has achieved remarkable performance. Entropy model, which accurately estimates the distribution of latent representation, plays an important role in boosting rate distortion performance. Most entropy models capture correlations in one dimension. However, there are channel-wise, local and global spatial correlations in latent representation. To address this issue, we propose multi-reference entropy models MEM and MEM+ to capture channel, local and global spatial contexts. We divide latent representation into slices. When decoding current slice, we use previously decoded slices as contexts and use attention map of previously decoded slice to predict global correlations in current slice. To capture local contexts, we propose enhanced checkerboard context capturing to avoid performance degradation while retaining two-pass decoding. Based on MEM and MEM+, we propose image compression models MLIC and MLIC+. Extensive experimental evaluations have shown that our MLIC and MLIC+ achieve state-of-the-art performance and they reduce BD-rate by 9.77% and 13.09% on Kodak dataset over VVC when measured in PSNR.
Abstract:Scalable coding, which can adapt to channel bandwidth variation, performs well in today's complex network environment. However, the existing scalable compression methods face two challenges: reduced compression performance and insufficient scalability. In this paper, we propose the first learned fine-grained scalable image compression model (DeepFGS) to overcome the above two shortcomings. Specifically, we introduce a feature separation backbone to divide the image information into basic and scalable features, then redistribute the features channel by channel through an information rearrangement strategy. In this way, we can generate a continuously scalable bitstream via one-pass encoding. In addition, we reuse the decoder to reduce the parameters and computational complexity of DeepFGS. Experiments demonstrate that our DeepFGS outperforms all learning-based scalable image compression models and conventional scalable image codecs in PSNR and MS-SSIM metrics. To the best of our knowledge, our DeepFGS is the first exploration of learned fine-grained scalable coding, which achieves the finest scalability compared with learning-based methods.