Abstract:Diffusion models have shown remarkable success in text-to-image generation, making alignment methods for these models increasingly important. A key challenge is the sparsity of preference labels, which are typically available only at the terminal of denoising trajectories. This raises the issue of how to assign credit across denoising steps based on these sparse labels. In this paper, we propose Denoised Distribution Estimation (DDE), a novel method for credit assignment. Unlike previous approaches that rely on auxiliary models or hand-crafted schemes, DDE derives its strategy more explicitly. The proposed DDE directly estimates the terminal denoised distribution from the perspective of each step. It is equipped with two estimation strategies and capable of representing the entire denoising trajectory with a single model inference. Theoretically and empirically, we show that DDE prioritizes optimizing the middle part of the denoising trajectory, resulting in a novel and effective credit assignment scheme. Extensive experiments demonstrate that our approach achieves superior performance, both quantitatively and qualitatively.
Abstract:Existing facial expression recognition (FER) methods typically fine-tune a pre-trained visual encoder using discrete labels. However, this form of supervision limits to specify the emotional concept of different facial expressions. In this paper, we observe that the rich knowledge in text embeddings, generated by vision-language models, is a promising alternative for learning discriminative facial expression representations. Inspired by this, we propose a novel knowledge-enhanced FER method with an emotional-to-neutral transformation. Specifically, we formulate the FER problem as a process to match the similarity between a facial expression representation and text embeddings. Then, we transform the facial expression representation to a neutral representation by simulating the difference in text embeddings from textual facial expression to textual neutral. Finally, a self-contrast objective is introduced to pull the facial expression representation closer to the textual facial expression, while pushing it farther from the neutral representation. We conduct evaluation with diverse pre-trained visual encoders including ResNet-18 and Swin-T on four challenging facial expression datasets. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art FER methods. The code will be publicly available.
Abstract:Event cameras offer significant advantages for low-light video enhancement, primarily due to their high dynamic range. Current research, however, is severely limited by the absence of large-scale, real-world, and spatio-temporally aligned event-video datasets. To address this, we introduce a large-scale dataset with over 30,000 pairs of frames and events captured under varying illumination. This dataset was curated using a robotic arm that traces a consistent non-linear trajectory, achieving spatial alignment precision under 0.03mm and temporal alignment with errors under 0.01s for 90% of the dataset. Based on the dataset, we propose \textbf{EvLight++}, a novel event-guided low-light video enhancement approach designed for robust performance in real-world scenarios. Firstly, we design a multi-scale holistic fusion branch to integrate structural and textural information from both images and events. To counteract variations in regional illumination and noise, we introduce Signal-to-Noise Ratio (SNR)-guided regional feature selection, enhancing features from high SNR regions and augmenting those from low SNR regions by extracting structural information from events. To incorporate temporal information and ensure temporal coherence, we further introduce a recurrent module and temporal loss in the whole pipeline. Extensive experiments on our and the synthetic SDSD dataset demonstrate that EvLight++ significantly outperforms both single image- and video-based methods by 1.37 dB and 3.71 dB, respectively. To further explore its potential in downstream tasks like semantic segmentation and monocular depth estimation, we extend our datasets by adding pseudo segmentation and depth labels via meticulous annotation efforts with foundation models. Experiments under diverse low-light scenes show that the enhanced results achieve a 15.97% improvement in mIoU for semantic segmentation.
Abstract:The Score Distillation Sampling (SDS), which exploits pretrained text-to-image model diffusion models as priors to 3D model training, has achieved significant success. Currently, the flow-based diffusion model has become a new trend for generations. Yet, adapting SDS to flow-based diffusion models in 3D generation remains unexplored. Our work is aimed to bridge this gap. In this paper, we adapt SDS to rectified flow and re-examine the over-smoothing issue under this novel framework. The issue can be explained that the model learns an average of multiple ODE trajectories. Then we propose DreamCouple, which instead of randomly sampling noise, uses a rectified flow model to find the coupled noise. Its Unique Couple Matching (UCM) loss guides the model to learn different trajectories and thus solves the over-smoothing issue. We apply our method to both NeRF and 3D Gaussian splatting and achieve state-of-the-art performances. We also identify some other interesting open questions such as initialization issues for NeRF and faster training convergence. Our code will be released soon.
Abstract:Text-to-3D content creation has recently received much attention, especially with the prevalence of 3D Gaussians Splatting. In general, GS-based methods comprise two key stages: initialization and rendering optimization. To achieve initialization, existing works directly apply random sphere initialization or 3D diffusion models, e.g., Point-E, to derive the initial shapes. However, such strategies suffer from two critical yet challenging problems: 1) the final shapes are still similar to the initial ones even after training; 2) shapes can be produced only from simple texts, e.g., "a dog", not for lexically richer texts, e.g., "a dog is sitting on the top of the airplane". To address these problems, this paper proposes a novel general framework to boost the 3D GS Initialization for text-to-3D generation upon the lexical richness. Our key idea is to aggregate 3D Gaussians into spatially uniform voxels to represent complex shapes while enabling the spatial interaction among the 3D Gaussians and semantic interaction between Gaussians and texts. Specifically, we first construct a voxelized representation, where each voxel holds a 3D Gaussian with its position, scale, and rotation fixed while setting opacity as the sole factor to determine a position's occupancy. We then design an initialization network mainly consisting of two novel components: 1) Global Information Perception (GIP) block and 2) Gaussians-Text Fusion (GTF) block. Such a design enables each 3D Gaussian to assimilate the spatial information from other areas and semantic information from texts. Extensive experiments show the superiority of our framework of high-quality 3D GS initialization against the existing methods, e.g., Shap-E, by taking lexically simple, medium, and hard texts. Also, our framework can be seamlessly plugged into SoTA training frameworks, e.g., LucidDreamer, for semantically consistent text-to-3D generation.
Abstract:Event cameras harness advantages such as low latency, high temporal resolution, and high dynamic range (HDR), compared to standard cameras. Due to the distinct imaging paradigm shift, a dominant line of research focuses on event-to-video (E2V) reconstruction to bridge event-based and standard computer vision. However, this task remains challenging due to its inherently ill-posed nature: event cameras only detect the edge and motion information locally. Consequently, the reconstructed videos are often plagued by artifacts and regional blur, primarily caused by the ambiguous semantics of event data. In this paper, we find language naturally conveys abundant semantic information, rendering it stunningly superior in ensuring semantic consistency for E2V reconstruction. Accordingly, we propose a novel framework, called LaSe-E2V, that can achieve semantic-aware high-quality E2V reconstruction from a language-guided perspective, buttressed by the text-conditional diffusion models. However, due to diffusion models' inherent diversity and randomness, it is hardly possible to directly apply them to achieve spatial and temporal consistency for E2V reconstruction. Thus, we first propose an Event-guided Spatiotemporal Attention (ESA) module to condition the event data to the denoising pipeline effectively. We then introduce an event-aware mask loss to ensure temporal coherence and a noise initialization strategy to enhance spatial consistency. Given the absence of event-text-video paired data, we aggregate existing E2V datasets and generate textual descriptions using the tagging models for training and evaluation. Extensive experiments on three datasets covering diverse challenging scenarios (e.g., fast motion, low light) demonstrate the superiority of our method. Dataset and code will be available upon acceptance.
Abstract:Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications. However, current LLMs that learn from human or external model supervision are costly and may face performance ceilings as task complexity and diversity increase. To address this issue, self-evolution approaches that enable LLM to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing. This new training paradigm inspired by the human experiential learning process offers the potential to scale LLMs towards superintelligence. In this work, we present a comprehensive survey of self-evolution approaches in LLMs. We first propose a conceptual framework for self-evolution and outline the evolving process as iterative cycles composed of four phases: experience acquisition, experience refinement, updating, and evaluation. Second, we categorize the evolution objectives of LLMs and LLM-based agents; then, we summarize the literature and provide taxonomy and insights for each module. Lastly, we pinpoint existing challenges and propose future directions to improve self-evolution frameworks, equipping researchers with critical insights to fast-track the development of self-evolving LLMs.
Abstract:Event camera has recently received much attention for low-light image enhancement (LIE) thanks to their distinct advantages, such as high dynamic range. However, current research is prohibitively restricted by the lack of large-scale, real-world, and spatial-temporally aligned event-image datasets. To this end, we propose a real-world (indoor and outdoor) dataset comprising over 30K pairs of images and events under both low and normal illumination conditions. To achieve this, we utilize a robotic arm that traces a consistent non-linear trajectory to curate the dataset with spatial alignment precision under 0.03mm. We then introduce a matching alignment strategy, rendering 90% of our dataset with errors less than 0.01s. Based on the dataset, we propose a novel event-guided LIE approach, called EvLight, towards robust performance in real-world low-light scenes. Specifically, we first design the multi-scale holistic fusion branch to extract holistic structural and textural information from both events and images. To ensure robustness against variations in the regional illumination and noise, we then introduce a Signal-to-Noise-Ratio (SNR)-guided regional feature selection to selectively fuse features of images from regions with high SNR and enhance those with low SNR by extracting regional structure information from events. Extensive experiments on our dataset and the synthetic SDSD dataset demonstrate our EvLight significantly surpasses the frame-based methods. Code and datasets are available at https://vlislab22.github.io/eg-lowlight/.
Abstract:This one page paper describes our method for the track of image compression. To achieve better perceptual quality, we use the adversarial loss to generate realistic textures, use region of interest (ROI) mask to guide the bit allocation for different regions. Our Team name is TLIC.
Abstract:Recent transportation research suggests that autonomous vehicles (AVs) have the potential to improve traffic flow efficiency as they are able to maintain smaller car-following distances. Nevertheless, being a unique class of ground robots, AVs are susceptible to robotic errors, particularly in their perception module, leading to uncertainties in their movements and an increased risk of collisions. Consequently, conservative operational strategies, such as larger headway and slower speeds, are implemented to prioritize safety over traffic capacity in real-world operations. To reconcile the inconsistency, this paper proposes an analytical model framework that delineates the endogenous reciprocity between traffic safety and efficiency that arises from robotic uncertainty in AVs. Car-following scenarios are extensively examined, with uncertain headway as the key parameter for bridging the single-lane capacity and the collision probability. A Markov chain is then introduced to describe the dynamics of the lane capacity, and the resulting expected collision-inclusive capacity is adopted as the ultimate performance measure for fully autonomous traffic. With the help of this analytical model, it is possible to support the settings of critical parameters in AV operations and incorporate optimization techniques to assist traffic management strategies for autonomous traffic.