Abstract:Following the burgeoning interest in implicit neural representation, Neural Light Field (NeLF) has been introduced to predict the color of a ray directly. Unlike Neural Radiance Field (NeRF), NeLF does not create a point-wise representation by predicting color and volume density for each point in space. However, the current NeLF methods face a challenge as they need to train a NeRF model first and then synthesize over 10K views to train NeLF for improved performance. Additionally, the rendering quality of NeLF methods is lower compared to NeRF methods. In this paper, we propose G-NeLF, a versatile grid-based NeLF approach that utilizes spatial-aware features to unleash the potential of the neural network's inference capability, and consequently overcome the difficulties of NeLF training. Specifically, we employ a spatial-aware feature sequence derived from a meticulously crafted grid as the ray's representation. Drawing from our empirical studies on the adaptability of multi-resolution hash tables, we introduce a novel grid-based ray representation for NeLF that can represent the entire space with a very limited number of parameters. To better utilize the sequence feature, we design a lightweight ray color decoder that simulates the ray propagation process, enabling a more efficient inference of the ray's color. G-NeLF can be trained without necessitating significant storage overhead and with the model size of only 0.95 MB to surpass previous state-of-the-art NeLF. Moreover, compared with grid-based NeRF methods, e.g., Instant-NGP, we only utilize one-tenth of its parameters to achieve higher performance. Our code will be released upon acceptance.
Abstract:Text-to-3D content creation has recently received much attention, especially with the prevalence of 3D Gaussians Splatting. In general, GS-based methods comprise two key stages: initialization and rendering optimization. To achieve initialization, existing works directly apply random sphere initialization or 3D diffusion models, e.g., Point-E, to derive the initial shapes. However, such strategies suffer from two critical yet challenging problems: 1) the final shapes are still similar to the initial ones even after training; 2) shapes can be produced only from simple texts, e.g., "a dog", not for lexically richer texts, e.g., "a dog is sitting on the top of the airplane". To address these problems, this paper proposes a novel general framework to boost the 3D GS Initialization for text-to-3D generation upon the lexical richness. Our key idea is to aggregate 3D Gaussians into spatially uniform voxels to represent complex shapes while enabling the spatial interaction among the 3D Gaussians and semantic interaction between Gaussians and texts. Specifically, we first construct a voxelized representation, where each voxel holds a 3D Gaussian with its position, scale, and rotation fixed while setting opacity as the sole factor to determine a position's occupancy. We then design an initialization network mainly consisting of two novel components: 1) Global Information Perception (GIP) block and 2) Gaussians-Text Fusion (GTF) block. Such a design enables each 3D Gaussian to assimilate the spatial information from other areas and semantic information from texts. Extensive experiments show the superiority of our framework of high-quality 3D GS initialization against the existing methods, e.g., Shap-E, by taking lexically simple, medium, and hard texts. Also, our framework can be seamlessly plugged into SoTA training frameworks, e.g., LucidDreamer, for semantically consistent text-to-3D generation.
Abstract:Text-to-3D synthesis has recently seen intriguing advances by combining the text-to-image models with 3D representation methods, e.g., Gaussian Splatting (GS), via Score Distillation Sampling (SDS). However, a hurdle of existing methods is the low efficiency, per-prompt optimization for a single 3D object. Therefore, it is imperative for a paradigm shift from per-prompt optimization to one-stage generation for any unseen text prompts, which yet remains challenging. A hurdle is how to directly generate a set of millions of 3D Gaussians to represent a 3D object. This paper presents BrightDreamer, an end-to-end single-stage approach that can achieve generalizable and fast (77 ms) text-to-3D generation. Our key idea is to formulate the generation process as estimating the 3D deformation from an anchor shape with predefined positions. For this, we first propose a Text-guided Shape Deformation (TSD) network to predict the deformed shape and its new positions, used as the centers (one attribute) of 3D Gaussians. To estimate the other four attributes (i.e., scaling, rotation, opacity, and SH coefficient), we then design a novel Text-guided Triplane Generator (TTG) to generate a triplane representation for a 3D object. The center of each Gaussian enables us to transform the triplane feature into the four attributes. The generated 3D Gaussians can be finally rendered at 705 frames per second. Extensive experiments demonstrate the superiority of our method over existing methods. Also, BrightDreamer possesses a strong semantic understanding capability even for complex text prompts. The project code is available at https://vlislab22.github.io/BrightDreamer.
Abstract:In this paper, we develop a new method, termed SDF-3DGAN, for 3D object generation and 3D-Aware image synthesis tasks, which introduce implicit Signed Distance Function (SDF) as the 3D object representation method in the generative field. We apply SDF for higher quality representation of 3D object in space and design a new SDF neural renderer, which has higher efficiency and higher accuracy. To train only on 2D images, we first generate the objects, which are represented by SDF, from Gaussian distribution. Then we render them to 2D images and use them to apply GAN training method together with 2D images in the dataset. In the new rendering method, we relieve all the potential of SDF mathematical property to alleviate computation pressure in the previous SDF neural renderer. In specific, our new SDF neural renderer can solve the problem of sampling ambiguity when the number of sampling point is not enough, \ie use the less points to finish higher quality sampling task in the rendering pipeline. And in this rendering pipeline, we can locate the surface easily. Therefore, we apply normal loss on it to control the smoothness of generated object surface, which can make our method enjoy the much higher generation quality. Quantitative and qualitative experiments conducted on public benchmarks demonstrate favorable performance against the state-of-the-art methods in 3D object generation task and 3D-Aware image synthesis task. Our codes will be released at https://github.com/lutao2021/SDF-3DGAN.
Abstract:Automatic security inspection relying on computer vision technology is a challenging task in real-world scenarios due to many factors, such as intra-class variance, class imbalance, and occlusion. Most previous methods rarely touch the cases where the prohibited items are deliberately hidden in messy objects because of the scarcity of large-scale datasets, hindering their applications. To address this issue and facilitate related research, we present a large-scale dataset, named PIDray, which covers various cases in real-world scenarios for prohibited item detection, especially for deliberately hidden items. In specific, PIDray collects 124,486 X-ray images for $12$ categories of prohibited items, and each image is manually annotated with careful inspection, which makes it, to our best knowledge, to largest prohibited items detection dataset to date. Meanwhile, we propose a general divide-and-conquer pipeline to develop baseline algorithms on PIDray. Specifically, we adopt the tree-like structure to suppress the influence of the long-tailed issue in the PIDray dataset, where the first course-grained node is tasked with the binary classification to alleviate the influence of head category, while the subsequent fine-grained node is dedicated to the specific tasks of the tail categories. Based on this simple yet effective scheme, we offer strong task-specific baselines across object detection, instance segmentation, and multi-label classification tasks and verify the generalization ability on common datasets (e.g., COCO and PASCAL VOC). Extensive experiments on PIDray demonstrate that the proposed method performs favorably against current state-of-the-art methods, especially for deliberately hidden items. Our benchmark and codes will be released at https://github.com/lutao2021/PIDray.