Abstract:Simultaneously using multimodal inputs from multiple sensors to train segmentors is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where multimodal segmentors over rely on certain modalities, causing performance drops when others are missing, common in real world applications. To this end, we develop the first framework for learning robust segmentor that can handle any combinations of visual modalities. Specifically, we first introduce a parallel multimodal learning strategy for learning a strong teacher. The cross-modal and unimodal distillation is then achieved in the multi scale representation space by transferring the feature level knowledge from multimodal to anymodal segmentors, aiming at addressing the unimodal bias and avoiding over-reliance on specific modalities. Moreover, a prediction level modality agnostic semantic distillation is proposed to achieve semantic knowledge transferring for segmentation. Extensive experiments on both synthetic and real-world multi-sensor benchmarks demonstrate that our method achieves superior performance.
Abstract:Accurate 3D reconstruction of dynamic surgical scenes from endoscopic video is essential for robotic-assisted surgery. While recent 3D Gaussian Splatting methods have shown promise in achieving high-quality reconstructions with fast rendering speeds, their use of inverse depth loss functions compresses depth variations. This can lead to a loss of fine geometric details, limiting their ability to capture precise 3D geometry and effectiveness in intraoperative application. To address these challenges, we present SurgicalGS, a dynamic 3D Gaussian Splatting framework specifically designed for surgical scene reconstruction with improved geometric accuracy. Our approach first initialises a Gaussian point cloud using depth priors, employing binary motion masks to identify pixels with significant depth variations and fusing point clouds from depth maps across frames for initialisation. We use the Flexible Deformation Model to represent dynamic scene and introduce a normalised depth regularisation loss along with an unsupervised depth smoothness constraint to ensure more accurate geometric reconstruction. Extensive experiments on two real surgical datasets demonstrate that SurgicalGS achieves state-of-the-art reconstruction quality, especially in terms of accurate geometry, advancing the usability of 3D Gaussian Splatting in robotic-assisted surgery.
Abstract:Zero-shot Panoptic Segmentation (ZPS) aims to recognize foreground instances and background stuff without images containing unseen categories in training. Due to the visual data sparsity and the difficulty of generalizing from seen to unseen categories, this task remains challenging. To better generalize to unseen classes, we propose Conditional tOken aligNment and Cycle trAnsiTion (CONCAT), to produce generalizable semantic vision queries. First, a feature extractor is trained by CON to link the vision and semantics for providing target queries. Formally, CON is proposed to align the semantic queries with the CLIP visual CLS token extracted from complete and masked images. To address the lack of unseen categories, a generator is required. However, one of the gaps in synthesizing pseudo vision queries, ie, vision queries for unseen categories, is describing fine-grained visual details through semantic embeddings. Therefore, we approach CAT to train the generator in semantic-vision and vision-semantic manners. In semantic-vision, visual query contrast is proposed to model the high granularity of vision by pulling the pseudo vision queries with the corresponding targets containing segments while pushing those without segments away. To ensure the generated queries retain semantic information, in vision-semantic, the pseudo vision queries are mapped back to semantic and supervised by real semantic embeddings. Experiments on ZPS achieve a 5.2% hPQ increase surpassing SOTA. We also examine inductive ZPS and open-vocabulary semantic segmentation and obtain comparative results while being 2 times faster in testing.
Abstract:Existing Generalized Zero-shot Semantic Segmentation (GZLSS) methods apply either finetuning the CLIP paradigm or formulating it as a mask classification task, benefiting from the Vision-Language Models (VLMs). However, the fine-tuning methods are restricted with fixed backbone models which are not flexible for segmentation, and mask classification methods heavily rely on additional explicit mask proposers. Meanwhile, prevalent methods utilize only seen categories which is a great waste, i.e., neglecting the area exists but not annotated. To this end, we propose CLIPTeacher, a new learning framework that can be applied to various per-pixel classification segmentation models without introducing any explicit mask proposer or changing the structure of CLIP, and utilize both seen and ignoring areas. Specifically, CLIPTeacher consists of two key modules: Global Learning Module (GLM) and Pixel Learning Module (PLM). Specifically, GLM aligns the dense features from an image encoder with the CLS token, i.e., the only token trained in CLIP, which is a simple but effective way to probe global information from the CLIP models. In contrast, PLM only leverages dense tokens from CLIP to produce high-level pseudo annotations for ignoring areas without introducing any extra mask proposer. Meanwhile, PLM can fully take advantage of the whole image based on the pseudo annotations. Experimental results on three benchmark datasets: PASCAL VOC 2012, COCO-Stuff 164k, and PASCAL Context show large performance gains, i.e., 2.2%, 1.3%, and 8.8%
Abstract:Data analysis usually suffers from the Missing Not At Random (MNAR) problem, where the cause of the value missing is not fully observed. Compared to the naive Missing Completely At Random (MCAR) problem, it is more in line with the realistic scenario whereas more complex and challenging. Existing statistical methods model the MNAR mechanism by different decomposition of the joint distribution of the complete data and the missing mask. But we empirically find that directly incorporating these statistical methods into deep generative models is sub-optimal. Specifically, it would neglect the confidence of the reconstructed mask during the MNAR imputation process, which leads to insufficient information extraction and less-guaranteed imputation quality. In this paper, we revisit the MNAR problem from a novel perspective that the complete data and missing mask are two modalities of incomplete data on an equal footing. Along with this line, we put forward a generative-model-specific joint probability decomposition method, conjunction model, to represent the distributions of two modalities in parallel and extract sufficient information from both complete data and missing mask. Taking a step further, we exploit a deep generative imputation model, namely GNR, to process the real-world missing mechanism in the latent space and concurrently impute the incomplete data and reconstruct the missing mask. The experimental results show that our GNR surpasses state-of-the-art MNAR baselines with significant margins (averagely improved from 9.9% to 18.8% in RMSE) and always gives a better mask reconstruction accuracy which makes the imputation more principle.
Abstract:We present Project Florida, a system architecture and software development kit (SDK) enabling deployment of large-scale Federated Learning (FL) solutions across a heterogeneous device ecosystem. Federated learning is an approach to machine learning based on a strong data sovereignty principle, i.e., that privacy and security of data is best enabled by storing it at its origin, whether on end-user devices or in segregated cloud storage silos. Federated learning enables model training across devices and silos while the training data remains within its security boundary, by distributing a model snapshot to a client running inside the boundary, running client code to update the model, and then aggregating updated snapshots across many clients in a central orchestrator. Deploying a FL solution requires implementation of complex privacy and security mechanisms as well as scalable orchestration infrastructure. Scale and performance is a paramount concern, as the model training process benefits from full participation of many client devices, which may have a wide variety of performance characteristics. Project Florida aims to simplify the task of deploying cross-device FL solutions by providing cloud-hosted infrastructure and accompanying task management interfaces, as well as a multi-platform SDK supporting most major programming languages including C++, Java, and Python, enabling FL training across a wide range of operating system (OS) and hardware specifications. The architecture decouples service management from the FL workflow, enabling a cloud service provider to deliver FL-as-a-service (FLaaS) to ML engineers and application developers. We present an overview of Florida, including a description of the architecture, sample code, and illustrative experiments demonstrating system capabilities.
Abstract:Federated Learning (FL) is a novel machine learning approach that allows the model trainer to access more data samples, by training the model across multiple decentralized data sources, while data access constraints are in place. Such trained models can achieve significantly higher performance beyond what can be done when trained on a single data source. As part of FL's promises, none of the training data is ever transmitted to any central location, ensuring that sensitive data remains local and private. These characteristics make FL perfectly suited for large-scale applications in healthcare, where a variety of compliance constraints restrict how data may be handled, processed, and stored. Despite the apparent benefits of federated learning, the heterogeneity in the local data distributions pose significant challenges, and such challenges are even more pronounced in the case of multilingual data providers. In this paper we present a federated learning system for training a large-scale multi-lingual model suitable for fine-tuning on downstream tasks such as medical entity tagging. Our work represents one of the first such production-scale systems, capable of training across multiple highly heterogeneous data providers, and achieving levels of accuracy that could not be otherwise achieved by using central training with public data. Finally, we show that the global model performance can be further improved by a training step performed locally.
Abstract:Semi-supervised learning has made significant strides in the medical domain since it alleviates the heavy burden of collecting abundant pixel-wise annotated data for semantic segmentation tasks. Existing semi-supervised approaches enhance the ability to extract features from unlabeled data with prior knowledge obtained from limited labeled data. However, due to the scarcity of labeled data, the features extracted by the models are limited in supervised learning, and the quality of predictions for unlabeled data also cannot be guaranteed. Both will impede consistency training. To this end, we proposed a novel uncertainty-aware scheme to make models learn regions purposefully. Specifically, we employ Monte Carlo Sampling as an estimation method to attain an uncertainty map, which can serve as a weight for losses to force the models to focus on the valuable region according to the characteristics of supervised learning and unsupervised learning. Simultaneously, in the backward process, we joint unsupervised and supervised losses to accelerate the convergence of the network via enhancing the gradient flow between different tasks. Quantitatively, we conduct extensive experiments on three challenging medical datasets. Experimental results show desirable improvements to state-of-the-art counterparts.
Abstract:Kriging (or Gaussian process regression) is a popular machine learning method for its flexibility and closed-form prediction expressions. However, one of the key challenges in applying kriging to engineering systems is that the available measurement data is scarce due to the measurement limitations and high sensing costs. On the other hand, physical knowledge of the engineering system is often available and represented in the form of partial differential equations (PDEs). We present in this work a PDE Informed Kriging model (PIK), which introduces PDE information via a set of PDE points and conducts posterior prediction similar to the standard kriging method. The proposed PIK model can incorporate physical knowledge from both linear and nonlinear PDEs. To further improve learning performance, we propose an Active PIK framework (APIK) that designs PDE points to leverage the PDE information based on the PIK model and measurement data. The selected PDE points not only explore the whole input space but also exploit the locations where the PDE information is critical in reducing predictive uncertainty. Finally, an expectation-maximization algorithm is developed for parameter estimation. We demonstrate the effectiveness of APIK in two synthetic examples, a shock wave case study, and a laser heating case study.
Abstract:Deep neural networks have achieved great success in multiple learning problems, and attracted increasing attention from the medicine community. In reality, however, the limited availability and high costs of medical data is a major challenge of applying deep neural networks to computer-aided diagnosis and treatment planning. We address this challenge with adaptive virtual patients (AVPs) and the associated physics-informed learning framework. Specifically, the original training dataset is fused with an additional dataset of AVPs, which are generated by a data-driven model and the associated supervision (e.g., labels) is obtained by a physics-based approach. A key novelty in the proposed framework is the bidirectional and uncoupled generative invertible networks (GIN), which can extract pathophysiological features from the training medical image and generate pathophysiologically meaningful virtual patients. In order to mitigate the possibly high labeling cost of physical experiments, a $\mu$-measure design is conducted: this allows the AVPs to not only further explore the uncertain regions, but also balance the label distribution. We then discuss the pathophysiological interpretability of GIN both theoretically and experimentally, and demonstrate the effectiveness of AVPs using a real medical image dataset, in which the proposed AVPs lower the labeling cost by 90% while achieving a 15% improvement in prediction accuracy.