Abstract:Segment Anything Model 2 (SAM2) has emerged as a strong base model in various pinhole imaging segmentation tasks. However, when applying it to $360^\circ$ domain, the significant field-of-view (FoV) gap between pinhole ($70^\circ \times 70^\circ$) and panoramic images ($180^\circ \times 360^\circ$) poses unique challenges. Two major concerns for this application includes 1) inevitable distortion and object deformation brought by the large FoV disparity between domains; 2) the lack of pixel-level semantic understanding that the original SAM2 cannot provide. To address these issues, we propose a novel OmniSAM framework, which makes the first attempt to apply SAM2 for panoramic semantic segmentation. Specifically, to bridge the first gap, OmniSAM first divides the panorama into sequences of patches. These patches are then treated as image sequences in similar manners as in video segmentation tasks. We then leverage the SAM2's memory mechanism to extract cross-patch correspondences that embeds the cross-FoV dependencies, improving feature continuity and the prediction consistency along mask boundaries. For the second gap, OmniSAM fine-tunes the pretrained image encoder and reutilize the mask decoder for semantic prediction. An FoV-based prototypical adaptation module with dynamic pseudo label update mechanism is also introduced to facilitate the alignment of memory and backbone features, thereby improving model generalization ability across different sizes of source models. Extensive experimental results demonstrate that OmniSAM outperforms the state-of-the-art methods by large margins, e.g., 79.06% (+10.22%) on SPin8-to-SPan8, 62.46% (+6.58%) on CS13-to-DP13.
Abstract:As one of the most extensive social networking services, Twitter has more than 300 million active users as of 2022. Among its many functions, Twitter is now one of the go-to platforms for consumers to share their opinions about products or experiences, including flight services provided by commercial airlines. This study aims to measure customer satisfaction by analyzing sentiments of Tweets that mention airlines using a machine learning approach. Relevant Tweets are retrieved from Twitter's API and processed through tokenization and vectorization. After that, these processed vectors are passed into a pre-trained machine learning classifier to predict the sentiments. In addition to sentiment analysis, we also perform lexical analysis on the collected Tweets to model keywords' frequencies, which provide meaningful contexts to facilitate the interpretation of sentiments. We then apply time series methods such as Bollinger Bands to detect abnormalities in sentiment data. Using historical records from January to July 2022, our approach is proven to be capable of capturing sudden and significant changes in passengers' sentiment. This study has the potential to be developed into an application that can help airlines, along with several other customer-facing businesses, efficiently detect abrupt changes in customers' sentiments and take adequate measures to counteract them.