Abstract:Knowledge distillation (KD) is a model compression technique that transfers knowledge from a large teacher model to a smaller student model to enhance its performance. Existing methods often assume that the student model is inherently inferior to the teacher model. However, we identify that the fundamental issue affecting student performance is the bias transferred by the teacher. Current KD frameworks transmit both right and wrong knowledge, introducing bias that misleads the student model. To address this issue, we propose a novel strategy to rectify bias and greatly improve the student model's performance. Our strategy involves three steps: First, we differentiate knowledge and design a bias elimination method to filter out biases, retaining only the right knowledge for the student model to learn. Next, we propose a bias rectification method to rectify the teacher model's wrong predictions, fundamentally addressing bias interference. The student model learns from both the right knowledge and the rectified biases, greatly improving its prediction accuracy. Additionally, we introduce a dynamic learning approach with a loss function that updates weights dynamically, allowing the student model to quickly learn right knowledge-based easy tasks initially and tackle hard tasks corresponding to biases later, greatly enhancing the student model's learning efficiency. To the best of our knowledge, this is the first strategy enabling the student model to surpass the teacher model. Experiments demonstrate that our strategy, as a plug-and-play module, is versatile across various mainstream KD frameworks. We will release our code after the paper is accepted.
Abstract:This paper conducted a comprehensive study on the performance of a rotary compressor over a rotational speed range of 80Hz to 200Hz through experimental tests and mathematical modeling. A compressor performance test rig was designed to conduct the performance tests, with fast-response pressure sensors and displacement sensors capturing the P-V diagram and dynamic motion of the moving components. Results show that the compressor efficiency degrades at high speeds due to the dominant loss factors of leakage and discharge power loss. Supercharging effects become significant at speeds above 160Hz, and its net effects reduce the compressor efficiency, especially at high speeds. This study identifies and analyzes the loss factors on the mass flow rate and power consumption based on experimental data, and hypothesizes possible mechanisms for each loss factor, which can aid in the design of a high-speed rotary compressor with higher efficiency.
Abstract:The success of deep networks in medical image segmentation relies heavily on massive labeled training data. However, acquiring dense annotations is a time-consuming process. Weakly-supervised methods normally employ less expensive forms of supervision, among which scribbles started to gain popularity lately thanks to its flexibility. However, due to lack of shape and boundary information, it is extremely challenging to train a deep network on scribbles that generalizes on unlabeled pixels. In this paper, we present a straightforward yet effective scribble supervised learning framework. Inspired by recent advances of transformer based segmentation, we create a pluggable spatial self-attention module which could be attached on top of any internal feature layers of arbitrary fully convolutional network (FCN) backbone. The module infuses global interaction while keeping the efficiency of convolutions. Descended from this module, we construct a similarity metric based on normalized and symmetrized attention. This attentive similarity leads to a novel regularization loss that imposes consistency between segmentation prediction and visual affinity. This attentive similarity loss optimizes the alignment of FCN encoders, attention mapping and model prediction. Ultimately, the proposed FCN+Attention architecture can be trained end-to-end guided by a combination of three learning objectives: partial segmentation loss, a customized masked conditional random fields and the proposed attentive similarity loss. Extensive experiments on public datasets (ACDC and CHAOS) showed that our framework not just out-performs existing state-of-the-art, but also delivers close performance to fully-supervised benchmark. Code will be available upon publication.
Abstract:Many deep learning based automated medical image segmentation systems, in reality, face difficulties in deployment due to the cost of massive data annotation and high latency in model iteration. We propose a dynamic interactive learning framework that addresses these challenges by integrating interactive segmentation into end-to-end weak supervised learning with streaming tasks. We develop novel replay and label smoothing schemes that overcome catastrophic forgetting and improve online learning robustness. For each image, our multi-round interactive segmentation module simultaneously optimizes both front-end predictions and deep learning segmenter. In each round, a 3D "proxy mask" is propagated from sparse user inputs based on image registration, serving as weak supervision that enable knowledge distillation from the unknown ground truth. In return, the trained segmenter explicitly guides next step's user interventions according to a spatial residual map from consecutive front or back-end predictions. Evaluation on 3D segmentation tasks (NCI-ISBI2013 and BraTS2015) shows that our framework generates online learning performances that match offline training benchmark. In addition, with a 62% reduction in total annotation efforts, our framework produces competitive dice scores comparing to online and offline learning which equipped with full ground truth. Furthermore, such a framework, with its flexibility and responsiveness, could be deployed behind hospital firewall that guarantees data security and easy maintenance.
Abstract:The advent of Industry 4.0 has precipitated the incorporation of Artificial Intelligence (AI) methods within industrial contexts, aiming to realize intelligent manufacturing, operation as well as maintenance, also known as industrial intelligence. However, intricate industrial milieus, particularly those relating to energy exploration and production, frequently encompass data characterized by long-tailed class distribution, sample imbalance, and domain shift. These attributes pose noteworthy challenges to data-centric Deep Learning (DL) techniques, crucial for the realization of industrial intelligence. The present study centers on the intricate and distinctive industrial scenarios of Nuclear Power Generation (NPG), meticulously scrutinizing the application of DL techniques under the constraints of finite data samples. Initially, the paper expounds on potential employment scenarios for AI across the full life-cycle of NPG. Subsequently, we delve into an evaluative exposition of DL's advancement, grounded in the finite sample perspective. This encompasses aspects such as small-sample learning, few-shot learning, zero-shot learning, and open-set recognition, also referring to the unique data characteristics of NPG. The paper then proceeds to present two specific case studies. The first revolves around the automatic recognition of zirconium alloy metallography, while the second pertains to open-set recognition for signal diagnosis of machinery sensors. These cases, spanning the entirety of NPG's life-cycle, are accompanied by constructive outcomes and insightful deliberations. By exploring and applying DL methodologies within the constraints of finite sample availability, this paper not only furnishes a robust technical foundation but also introduces a fresh perspective toward the secure and efficient advancement and exploitation of this advanced energy source.
Abstract:Structural Health Monitoring (SHM) is crucial for the safety and maintenance of various infrastructures. Due to the large amount of data generated by numerous sensors and the high real-time requirements of many applications, SHM poses significant challenges. Although the cloud-centric stream computing paradigm opens new opportunities for real-time data processing, it consumes too much network bandwidth. In this paper, we propose ECStream, an Edge Cloud collaborative fine-grained stream operator scheduling framework for SHM. We collectively consider atomic and composite operators together with their iterative computability to model and formalize the problem of minimizing bandwidth usage and end-to-end operator processing latency. Preliminary evaluation results show that ECStream can effectively balance bandwidth usage and end-to-end operator computation latency, reducing bandwidth usage by 73.01% and latency by 34.08% on average compared to the cloud-centric approach.
Abstract:In this paper, we present our solution to the New frontiers for Zero-shot Image Captioning Challenge. Different from the traditional image captioning datasets, this challenge includes a larger new variety of visual concepts from many domains (such as COVID-19) as well as various image types (photographs, illustrations, graphics). For the data level, we collect external training data from Laion-5B, a large-scale CLIP-filtered image-text dataset. For the model level, we use OFA, a large-scale visual-language pre-training model based on handcrafted templates, to perform the image captioning task. In addition, we introduce contrastive learning to align image-text pairs to learn new visual concepts in the pre-training stage. Then, we propose a similarity-bucket strategy and incorporate this strategy into the template to force the model to generate higher quality and more matching captions. Finally, by retrieval-augmented strategy, we construct a content-rich template, containing the most relevant top-k captions from other image-text pairs, to guide the model in generating semantic-rich captions. Our method ranks first on the leaderboard, achieving 105.17 and 325.72 Cider-Score in the validation and test phase, respectively.
Abstract:In this report, we introduce NICE (New frontiers for zero-shot Image Captioning Evaluation) project and share the results and outcomes of 2023 challenge. This project is designed to challenge the computer vision community to develop robust image captioning models that advance the state-of-the-art both in terms of accuracy and fairness. Through the challenge, the image captioning models were tested using a new evaluation dataset that includes a large variety of visual concepts from many domains. There was no specific training data provided for the challenge, and therefore the challenge entries were required to adapt to new types of image descriptions that had not been seen during training. This report includes information on the newly proposed NICE dataset, evaluation methods, challenge results, and technical details of top-ranking entries. We expect that the outcomes of the challenge will contribute to the improvement of AI models on various vision-language tasks.
Abstract:The advancement of computer vision and machine learning has made datasets a crucial element for further research and applications. However, the creation and development of robots with advanced recognition capabilities are hindered by the lack of appropriate datasets. Existing image or video processing datasets are unable to accurately depict observations from a moving robot, and they do not contain the kinematics information necessary for robotic tasks. Synthetic data, on the other hand, are cost-effective to create and offer greater flexibility for adapting to various applications. Hence, they are widely utilized in both research and industry. In this paper, we propose the dataset HabitatDyn, which contains both synthetic RGB videos, semantic labels, and depth information, as well as kinetics information. HabitatDyn was created from the perspective of a mobile robot with a moving camera, and contains 30 scenes featuring six different types of moving objects with varying velocities. To demonstrate the usability of our dataset, two existing algorithms are used for evaluation and an approach to estimate the distance between the object and camera is implemented based on these segmentation methods and evaluated through the dataset. With the availability of this dataset, we aspire to foster further advancements in the field of mobile robotics, leading to more capable and intelligent robots that can navigate and interact with their environments more effectively. The code is publicly available at https://github.com/ignc-research/HabitatDyn.
Abstract:\textit{Complementary label learning} (CLL) requires annotators to give \emph{irrelevant} labels instead of relevant labels for instances. Currently, CLL has shown its promising performance on multi-class data by estimating a transition matrix. However, current multi-class CLL techniques cannot work well on multi-labeled data since they assume each instance is associated with one label while each multi-labeled instance is relevant to multiple labels. Here, we show theoretically how the estimated transition matrix in multi-class CLL could be distorted in multi-labeled cases as they ignore co-existing relevant labels. Moreover, theoretical findings reveal that calculating a transition matrix from label correlations in \textit{multi-labeled CLL} (ML-CLL) needs multi-labeled data, while this is unavailable for ML-CLL. To solve this issue, we propose a two-step method to estimate the transition matrix from candidate labels. Specifically, we first estimate an initial transition matrix by decomposing the multi-label problem into a series of binary classification problems, then the initial transition matrix is corrected by label correlations to enforce the addition of relationships among labels. We further show that the proposal is classifier-consistent, and additionally introduce an MSE-based regularizer to alleviate the tendency of BCE loss overfitting to noises. Experimental results have demonstrated the effectiveness of the proposed method.