Many deep learning based automated medical image segmentation systems, in reality, face difficulties in deployment due to the cost of massive data annotation and high latency in model iteration. We propose a dynamic interactive learning framework that addresses these challenges by integrating interactive segmentation into end-to-end weak supervised learning with streaming tasks. We develop novel replay and label smoothing schemes that overcome catastrophic forgetting and improve online learning robustness. For each image, our multi-round interactive segmentation module simultaneously optimizes both front-end predictions and deep learning segmenter. In each round, a 3D "proxy mask" is propagated from sparse user inputs based on image registration, serving as weak supervision that enable knowledge distillation from the unknown ground truth. In return, the trained segmenter explicitly guides next step's user interventions according to a spatial residual map from consecutive front or back-end predictions. Evaluation on 3D segmentation tasks (NCI-ISBI2013 and BraTS2015) shows that our framework generates online learning performances that match offline training benchmark. In addition, with a 62% reduction in total annotation efforts, our framework produces competitive dice scores comparing to online and offline learning which equipped with full ground truth. Furthermore, such a framework, with its flexibility and responsiveness, could be deployed behind hospital firewall that guarantees data security and easy maintenance.