Abstract:Vision-language-action models (VLAs) have become increasingly popular in robot manipulation for their end-to-end design and remarkable performance. However, existing VLAs rely heavily on vision-language models (VLMs) that only support text-based instructions, neglecting the more natural speech modality for human-robot interaction. Traditional speech integration methods usually involves a separate speech recognition system, which complicates the model and introduces error propagation. Moreover, the transcription procedure would lose non-semantic information in the raw speech, such as voiceprint, which may be crucial for robots to successfully complete customized tasks. To overcome above challenges, we propose VLAS, a novel end-to-end VLA that integrates speech recognition directly into the robot policy model. VLAS allows the robot to understand spoken commands through inner speech-text alignment and produces corresponding actions to fulfill the task. We also present two new datasets, SQA and CSI, to support a three-stage tuning process for speech instructions, which empowers VLAS with the ability of multimodal interaction across text, image, speech, and robot actions. Taking a step further, a voice retrieval-augmented generation (RAG) paradigm is designed to enable our model to effectively handle tasks that require individual-specific knowledge. Our extensive experiments show that VLAS can effectively accomplish robot manipulation tasks with diverse speech commands, offering a seamless and customized interaction experience.
Abstract:Despite their advances and success, real-world deep neural networks are known to be vulnerable to adversarial attacks. Universal adversarial perturbation, an input-agnostic attack, poses a serious threat for them to be deployed in security-sensitive systems. In this case, a single universal adversarial perturbation deceives the model on a range of clean inputs without requiring input-specific optimization, which makes it particularly threatening. In this work, we observe that universal adversarial perturbations usually lead to abnormal entropy spectrum in hidden layers, which suggests that the prediction is dominated by a small number of ``feature'' in such cases (rather than democratically by many features). Inspired by this, we propose an efficient yet effective defense method for mitigating UAPs called \emph{Democratic Training} by performing entropy-based model enhancement to suppress the effect of the universal adversarial perturbations in a given model. \emph{Democratic Training} is evaluated with 7 neural networks trained on 5 benchmark datasets and 5 types of state-of-the-art universal adversarial attack methods. The results show that it effectively reduces the attack success rate, improves model robustness and preserves the model accuracy on clean samples.
Abstract:Electrocardiogram (ECG) analysis is a fundamental tool for diagnosing cardiovascular conditions, yet anomaly detection in ECG signals remains challenging due to their inherent complexity and variability. We propose Multi-scale Masked Autoencoder for ECG anomaly detection (MMAE-ECG), a novel end-to-end framework that effectively captures both global and local dependencies in ECG data. Unlike state-of-the-art methods that rely on heartbeat segmentation or R-peak detection, MMAE-ECG eliminates the need for such pre-processing steps, enhancing its suitability for clinical deployment. MMAE-ECG partitions ECG signals into non-overlapping segments, with each segment assigned learnable positional embeddings. A novel multi-scale masking strategy and multi-scale attention mechanism, along with distinct positional embeddings, enable a lightweight Transformer encoder to effectively capture both local and global dependencies. The masked segments are then reconstructed using a single-layer Transformer block, with an aggregation strategy employed during inference to refine the outputs. Experimental results demonstrate that our method achieves performance comparable to state-of-the-art approaches while significantly reducing computational complexity-approximately 1/78 of the floating-point operations (FLOPs) required for inference. Ablation studies further validate the effectiveness of each component, highlighting the potential of multi-scale masked autoencoders for anomaly detection.
Abstract:With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
Abstract:Behavior Cloning (BC) is a widely adopted visual imitation learning method in robot manipulation. Current BC approaches often enhance generalization by leveraging large datasets and incorporating additional visual and textual modalities to capture more diverse information. However, these methods overlook whether the learned representations contain redundant information and lack a solid theoretical foundation to guide the learning process. To address these limitations, we adopt an information-theoretic perspective and introduce mutual information to quantify and mitigate redundancy in latent representations. Building on this, we incorporate the Information Bottleneck (IB) principle into BC, which extends the idea of reducing redundancy by providing a structured framework for compressing irrelevant information while preserving task-relevant features. This work presents the first comprehensive study on redundancy in latent representations across various methods, backbones, and experimental settings, while extending the generalizability of the IB to BC. Extensive experiments and analyses on the CortexBench and LIBERO benchmarks demonstrate significant performance improvements with IB, underscoring the importance of reducing input data redundancy and highlighting its practical value for more practical applications. Project Page: https://baishuanghao.github.io/BC-IB.github.io.
Abstract:Federated Learning (FL) has gained significant attention as it facilitates collaborative machine learning among multiple clients without centralizing their data on a server. FL ensures the privacy of participating clients by locally storing their data, which creates new challenges in fairness. Traditional debiasing methods assume centralized access to sensitive information, rendering them impractical for the FL setting. Additionally, FL is more susceptible to fairness issues than centralized machine learning due to the diverse client data sources that may be associated with group information. Therefore, training a fair model in FL without access to client local data is important and challenging. This paper presents AFed, a straightforward yet effective framework for promoting group fairness in FL. The core idea is to circumvent restricted data access by learning the global data distribution. This paper proposes two approaches: AFed-G, which uses a conditional generator trained on the server side, and AFed-GAN, which improves upon AFed-G by training a conditional GAN on the client side. We augment the client data with the generated samples to help remove bias. Our theoretical analysis justifies the proposed methods, and empirical results on multiple real-world datasets demonstrate a substantial improvement in AFed over several baselines.
Abstract:Mixup is a data augmentation technique that enhances model generalization by interpolating between data points using a mixing ratio $\lambda$ in the image domain. Recently, the concept of mixup has been adapted to the graph domain through node-centric interpolations. However, these approaches often fail to address the complexity of interconnected relationships, potentially damaging the graph's natural topology and undermining node interactions. Furthermore, current graph mixup methods employ a one-size-fits-all strategy with a randomly sampled $\lambda$ for all mixup pairs, ignoring the diverse needs of different pairs. This paper proposes an Adaptive Graph Mixup (AGMixup) framework for semi-supervised node classification. AGMixup introduces a subgraph-centric approach, which treats each subgraph similarly to how images are handled in Euclidean domains, thus facilitating a more natural integration of mixup into graph-based learning. We also propose an adaptive mechanism to tune the mixing ratio $\lambda$ for diverse mixup pairs, guided by the contextual similarity and uncertainty of the involved subgraphs. Extensive experiments across seven datasets on semi-supervised node classification benchmarks demonstrate AGMixup's superiority over state-of-the-art graph mixup methods. Source codes are available at \url{https://github.com/WeigangLu/AGMixup}.
Abstract:In robotic visuomotor policy learning, diffusion-based models have achieved significant success in improving the accuracy of action trajectory generation compared to traditional autoregressive models. However, they suffer from inefficiency due to multiple denoising steps and limited flexibility from complex constraints. In this paper, we introduce Coarse-to-Fine AutoRegressive Policy (CARP), a novel paradigm for visuomotor policy learning that redefines the autoregressive action generation process as a coarse-to-fine, next-scale approach. CARP decouples action generation into two stages: first, an action autoencoder learns multi-scale representations of the entire action sequence; then, a GPT-style transformer refines the sequence prediction through a coarse-to-fine autoregressive process. This straightforward and intuitive approach produces highly accurate and smooth actions, matching or even surpassing the performance of diffusion-based policies while maintaining efficiency on par with autoregressive policies. We conduct extensive evaluations across diverse settings, including single-task and multi-task scenarios on state-based and image-based simulation benchmarks, as well as real-world tasks. CARP achieves competitive success rates, with up to a 10% improvement, and delivers 10x faster inference compared to state-of-the-art policies, establishing a high-performance, efficient, and flexible paradigm for action generation in robotic tasks.
Abstract:Low-dose CT (LDCT) significantly reduces the radiation dose received by patients, thereby decreasing potential health risks. However, dose reduction introduces additional noise and artifacts, adversely affecting image quality and clinical diagnosis. Currently, denoising methods based on convolutional neural networks (CNNs) face limitations in long-range modeling capabilities, while Transformer-based denoising methods, although capable of powerful long-range modeling, suffer from high computational complexity. Furthermore, the denoised images predicted by deep learning-based techniques inevitably exhibit differences in noise distribution compared to Normal-dose CT (NDCT) images, which can also impact the final image quality and diagnostic outcomes. In recent years, the feasibility of applying deep learning methods to low-dose CT imaging has been demonstrated, leading to significant achievements. This paper proposes CT-Mamba, a hybrid convolutional State Space Model for LDCT image denoising. The model combines the local feature extraction advantages of CNNs with Mamba's global modeling capability, enabling it to capture both local details and global context. Additionally, a Mamba-driven deep noise power spectrum (NPS) loss function was designed to guide model training, ensuring that the noise texture of the denoised LDCT images closely resembles that of NDCT images, thereby enhancing overall image quality and diagnostic value. Experimental results have demonstrated that CT-Mamba performs excellently in reducing noise in LDCT images, enhancing detail preservation, and optimizing noise texture distribution, while demonstrating statistically similar radiomics features to those of NDCT images (p > 0.05). The proposed CT-Mamba demonstrates outstanding performance in LDCT denoising and holds promise as a representative approach for applying the Mamba framework to LDCT denoising tasks.
Abstract:The core of self-supervised point cloud learning lies in setting up appropriate pretext tasks, to construct a pre-training framework that enables the encoder to perceive 3D objects effectively. In this paper, we integrate two prevalent methods, masked point modeling (MPM) and 3D-to-2D generation, as pretext tasks within a pre-training framework. We leverage the spatial awareness and precise supervision offered by these two methods to address their respective limitations: ambiguous supervision signals and insensitivity to geometric information. Specifically, the proposed framework, abbreviated as PointCG, consists of a Hidden Point Completion (HPC) module and an Arbitrary-view Image Generation (AIG) module. We first capture visible points from arbitrary views as inputs by removing hidden points. Then, HPC extracts representations of the inputs with an encoder and completes the entire shape with a decoder, while AIG is used to generate rendered images based on the visible points' representations. Extensive experiments demonstrate the superiority of the proposed method over the baselines in various downstream tasks. Our code will be made available upon acceptance.