Abstract:Despite significant progress in 4D content generation, the conversion of monocular videos into high-quality animated 3D assets with explicit 4D meshes remains considerably challenging. The scarcity of large-scale, naturally captured 4D mesh datasets further limits the ability to train generalizable video-to-4D models from scratch in a purely data-driven manner. Meanwhile, advances in image-to-3D generation, supported by extensive datasets, offer powerful prior models that can be leveraged. To better utilize these priors while minimizing reliance on 4D supervision, we introduce SWiT-4D, a Sliding-Window Transformer for lossless, parameter-free temporal 4D mesh generation. SWiT-4D integrates seamlessly with any Diffusion Transformer (DiT)-based image-to-3D generator, adding spatial-temporal modeling across video frames while preserving the original single-image forward process, enabling 4D mesh reconstruction from videos of arbitrary length. To recover global translation, we further introduce an optimization-based trajectory module tailored for static-camera monocular videos. SWiT-4D demonstrates strong data efficiency: with only a single short (<10s) video for fine-tuning, it achieves high-fidelity geometry and stable temporal consistency, indicating practical deployability under extremely limited 4D supervision. Comprehensive experiments on both in-domain zoo-test sets and challenging out-of-domain benchmarks (C4D, Objaverse, and in-the-wild videos) show that SWiT-4D consistently outperforms existing baselines in temporal smoothness. Project page: https://animotionlab.github.io/SWIT4D/
Abstract:Motion capture now underpins content creation far beyond digital humans, yet most existing pipelines remain species- or template-specific. We formalize this gap as Category-Agnostic Motion Capture (CAMoCap): given a monocular video and an arbitrary rigged 3D asset as a prompt, the goal is to reconstruct a rotation-based animation such as BVH that directly drives the specific asset. We present MoCapAnything, a reference-guided, factorized framework that first predicts 3D joint trajectories and then recovers asset-specific rotations via constraint-aware inverse kinematics. The system contains three learnable modules and a lightweight IK stage: (1) a Reference Prompt Encoder that extracts per-joint queries from the asset's skeleton, mesh, and rendered images; (2) a Video Feature Extractor that computes dense visual descriptors and reconstructs a coarse 4D deforming mesh to bridge the gap between video and joint space; and (3) a Unified Motion Decoder that fuses these cues to produce temporally coherent trajectories. We also curate Truebones Zoo with 1038 motion clips, each providing a standardized skeleton-mesh-render triad. Experiments on both in-domain benchmarks and in-the-wild videos show that MoCapAnything delivers high-quality skeletal animations and exhibits meaningful cross-species retargeting across heterogeneous rigs, enabling scalable, prompt-driven 3D motion capture for arbitrary assets. Project page: https://animotionlab.github.io/MoCapAnything/
Abstract:Incomplete multi-view data, where different views suffer from missing and unbalanced observations, pose significant challenges for clustering. Existing imputation-based methods attempt to estimate missing views to restore data associations, but indiscriminate imputation often introduces noise and bias, especially when the available information is insufficient. Imputation-free methods avoid this risk by relying solely on observed data, but struggle under severe incompleteness due to the lack of cross-view complementarity. To address this issue, we propose Informativeness-based Selective imputation Multi-View Clustering (ISMVC). Our method evaluates the imputation-relevant informativeness of each missing position based on intra-view similarity and cross-view consistency, and selectively imputes only when sufficient support is available. Furthermore, we integrate this selection with a variational autoencoder equipped with a mixture-of-Gaussians prior to learn clustering-friendly latent representations. By performing distribution-level imputation, ISMVC not only stabilizes the aggregation of posterior distributions but also explicitly models imputation uncertainty, enabling robust fusion and preventing overconfident reconstructions. Compared with existing cautious imputation strategies that depend on training dynamics or model feedback, our method is lightweight, data-driven, and model-agnostic. It can be readily integrated into existing IMC models as a plug-in module. Extensive experiments on multiple benchmark datasets under a more realistic and challenging unbalanced missing scenario demonstrate that our method outperforms both imputation-based and imputation-free approaches.
Abstract:Understanding complex biomolecular mechanisms requires multi-step reasoning across molecular interactions, signaling cascades, and metabolic pathways. While large language models(LLMs) show promise in such tasks, their application to biomolecular problems is hindered by logical inconsistencies and the lack of grounding in domain knowledge. Existing approaches often exacerbate these issues: reasoning steps may deviate from biological facts or fail to capture long mechanistic dependencies. To address these challenges, we propose a Knowledge-Augmented Long-CoT Reasoning framework that integrates LLMs with knowledge graph-based multi-hop reasoning chains. The framework constructs mechanistic chains via guided multi-hop traversal and pruning on the knowledge graph; these chains are then incorporated into supervised fine-tuning to improve factual grounding and further refined with reinforcement learning to enhance reasoning reliability and consistency. Furthermore, to overcome the shortcomings of existing benchmarks, which are often restricted in scale and scope and lack annotations for deep reasoning chains, we introduce PrimeKGQA, a comprehensive benchmark for biomolecular question answering. Experimental results on both PrimeKGQA and existing datasets demonstrate that although larger closed-source models still perform well on relatively simple tasks, our method demonstrates clear advantages as reasoning depth increases, achieving state-of-the-art performance on multi-hop tasks that demand traversal of structured biological knowledge. These findings highlight the effectiveness of combining structured knowledge with advanced reasoning strategies for reliable and interpretable biomolecular reasoning.
Abstract:Collision detection is a core component of robotics applications such as simulation, control, and planning. Traditional algorithms like GJK+EPA compute witness points (i.e., the closest or deepest-penetration pairs between two objects) but are inherently non-differentiable, preventing gradient flow and limiting gradient-based optimization in contact-rich tasks such as grasping and manipulation. Recent work introduced efficient first-order randomized smoothing to make witness points differentiable; however, their direction-based formulation is restricted to convex objects and lacks robustness for complex geometries. In this work, we propose a robust and efficient differentiable collision detection framework that supports both convex and concave objects across diverse scales and configurations. Our method introduces distance-based first-order randomized smoothing, adaptive sampling, and equivalent gradient transport for robust and informative gradient computation. Experiments on complex meshes from DexGraspNet and Objaverse show significant improvements over existing baselines. Finally, we demonstrate a direct application of our method for dexterous grasp synthesis to refine the grasp quality. The code is available at https://github.com/JYChen18/DiffCollision.
Abstract:Vision-Language Models (VLMs) excel in diverse multimodal tasks. However, user requirements vary across scenarios, which can be categorized into fast response, high-quality output, and low energy consumption. Relying solely on large models deployed in the cloud for all queries often leads to high latency and energy cost, while small models deployed on edge devices are capable of handling simpler tasks with low latency and energy cost. To fully leverage the strengths of both large and small models, we propose ECVL-ROUTER, the first scenario-aware routing framework for VLMs. Our approach introduces a new routing strategy and evaluation metrics that dynamically select the appropriate model for each query based on user requirements, maximizing overall utility. We also construct a multimodal response-quality dataset tailored for router training and validate the approach through extensive experiments. Results show that our approach successfully routes over 80\% of queries to the small model while incurring less than 10\% drop in problem solving probability.
Abstract:Group based reinforcement learning (RL) has shown impressive results on complex reasoning and mathematical tasks. Yet, when applied to train multi-turn, interactive LLM agents, these methods often suffer from structural blindness-the inability to exploit the underlying connectivity of the environment. This manifests in three critical challenges: (1) inefficient, unguided exploration, (2) imprecise credit assignment due to overlooking pivotal states, and (3) myopic planning caused by static reward discounting. We address these issues with Graph-Enhanced Policy Optimization (GEPO), which dynamically constructs a state-transition graph from agent experience and employs graph-theoretic centrality to provide three synergistic learning signals: (1)structured intrinsic rewards that guide exploration toward high-impact states, (2) a graph-enhanced advantage function for topology-aware credit assignment, and (3) a dynamic discount factor adapted to each state's strategic value. On the ALFWorld, WebShop, and a proprietary Workbench benchmarks, GEPO demonstrates strong performance, achieving absolute success rate gains of +4.1%, +5.3%, and +10.9% over competitive baselines. These results highlight that explicitly modeling environmental structure is a robust, generalizable strategy for advancing LLM agent training.
Abstract:The "pre-train, prompt'' paradigm, designed to bridge the gap between pre-training tasks and downstream objectives, has been extended from the NLP domain to the graph domain and has achieved remarkable progress. Current mainstream graph prompt-tuning methods modify input or output features using learnable prompt vectors. However, existing approaches are confined to single-granularity (e.g., node-level or subgraph-level) during prompt generation, overlooking the inherently multi-scale structural information in graph data, which limits the diversity of prompt semantics. To address this issue, we pioneer the integration of multi-scale information into graph prompt and propose a Multi-Scale Graph Chain-of-Thought (MSGCOT) prompting framework. Specifically, we design a lightweight, low-rank coarsening network to efficiently capture multi-scale structural features as hierarchical basis vectors for prompt generation. Subsequently, mimicking human cognition from coarse-to-fine granularity, we dynamically integrate multi-scale information at each reasoning step, forming a progressive coarse-to-fine prompt chain. Extensive experiments on eight benchmark datasets demonstrate that MSGCOT outperforms the state-of-the-art single-granularity graph prompt-tuning method, particularly in few-shot scenarios, showcasing superior performance.
Abstract:Prototype-based federated learning (PFL) has emerged as a promising paradigm to address data heterogeneity problems in federated learning, as it leverages mean feature vectors as prototypes to enhance model generalization. However, its robustness against backdoor attacks remains largely unexplored. In this paper, we identify that PFL is inherently resistant to existing backdoor attacks due to its unique prototype learning mechanism and local data heterogeneity. To further explore the security of PFL, we propose BAPFL, the first backdoor attack method specifically designed for PFL frameworks. BAPFL integrates a prototype poisoning strategy with a trigger optimization mechanism. The prototype poisoning strategy manipulates the trajectories of global prototypes to mislead the prototype training of benign clients, pushing their local prototypes of clean samples away from the prototypes of trigger-embedded samples. Meanwhile, the trigger optimization mechanism learns a unique and stealthy trigger for each potential target label, and guides the prototypes of trigger-embedded samples to align closely with the global prototype of the target label. Experimental results across multiple datasets and PFL variants demonstrate that BAPFL achieves a 35\%-75\% improvement in attack success rate compared to traditional backdoor attacks, while preserving main task accuracy. These results highlight the effectiveness, stealthiness, and adaptability of BAPFL in PFL.
Abstract:ECG foundation models are increasingly popular due to their adaptability across various tasks. However, their clinical applicability is often limited by performance gaps compared to task-specific models, even after pre-training on large ECG datasets and fine-tuning on target data. This limitation is likely due to the lack of an effective post-training strategy. In this paper, we propose a simple yet effective post-training approach to enhance ECGFounder, a state-of-the-art ECG foundation model pre-trained on over 7 million ECG recordings. Experiments on the PTB-XL benchmark show that our approach improves the baseline fine-tuning strategy by 1.2%-3.3% in macro AUROC and 5.3%-20.9% in macro AUPRC. Additionally, our method outperforms several recent state-of-the-art approaches, including task-specific and advanced architectures. Further evaluation reveals that our method is more stable and sample-efficient compared to the baseline, achieving a 9.1% improvement in macro AUROC and a 34.9% improvement in macro AUPRC using just 10% of the training data. Ablation studies identify key components, such as stochastic depth and preview linear probing, that contribute to the enhanced performance. These findings underscore the potential of post-training strategies to improve ECG foundation models, and we hope this work will contribute to the continued development of foundation models in the ECG domain.