Abstract:Federated Learning (FL) has gained significant attention as it facilitates collaborative machine learning among multiple clients without centralizing their data on a server. FL ensures the privacy of participating clients by locally storing their data, which creates new challenges in fairness. Traditional debiasing methods assume centralized access to sensitive information, rendering them impractical for the FL setting. Additionally, FL is more susceptible to fairness issues than centralized machine learning due to the diverse client data sources that may be associated with group information. Therefore, training a fair model in FL without access to client local data is important and challenging. This paper presents AFed, a straightforward yet effective framework for promoting group fairness in FL. The core idea is to circumvent restricted data access by learning the global data distribution. This paper proposes two approaches: AFed-G, which uses a conditional generator trained on the server side, and AFed-GAN, which improves upon AFed-G by training a conditional GAN on the client side. We augment the client data with the generated samples to help remove bias. Our theoretical analysis justifies the proposed methods, and empirical results on multiple real-world datasets demonstrate a substantial improvement in AFed over several baselines.
Abstract:Mixup is a data augmentation technique that enhances model generalization by interpolating between data points using a mixing ratio $\lambda$ in the image domain. Recently, the concept of mixup has been adapted to the graph domain through node-centric interpolations. However, these approaches often fail to address the complexity of interconnected relationships, potentially damaging the graph's natural topology and undermining node interactions. Furthermore, current graph mixup methods employ a one-size-fits-all strategy with a randomly sampled $\lambda$ for all mixup pairs, ignoring the diverse needs of different pairs. This paper proposes an Adaptive Graph Mixup (AGMixup) framework for semi-supervised node classification. AGMixup introduces a subgraph-centric approach, which treats each subgraph similarly to how images are handled in Euclidean domains, thus facilitating a more natural integration of mixup into graph-based learning. We also propose an adaptive mechanism to tune the mixing ratio $\lambda$ for diverse mixup pairs, guided by the contextual similarity and uncertainty of the involved subgraphs. Extensive experiments across seven datasets on semi-supervised node classification benchmarks demonstrate AGMixup's superiority over state-of-the-art graph mixup methods. Source codes are available at \url{https://github.com/WeigangLu/AGMixup}.
Abstract:In robotic visuomotor policy learning, diffusion-based models have achieved significant success in improving the accuracy of action trajectory generation compared to traditional autoregressive models. However, they suffer from inefficiency due to multiple denoising steps and limited flexibility from complex constraints. In this paper, we introduce Coarse-to-Fine AutoRegressive Policy (CARP), a novel paradigm for visuomotor policy learning that redefines the autoregressive action generation process as a coarse-to-fine, next-scale approach. CARP decouples action generation into two stages: first, an action autoencoder learns multi-scale representations of the entire action sequence; then, a GPT-style transformer refines the sequence prediction through a coarse-to-fine autoregressive process. This straightforward and intuitive approach produces highly accurate and smooth actions, matching or even surpassing the performance of diffusion-based policies while maintaining efficiency on par with autoregressive policies. We conduct extensive evaluations across diverse settings, including single-task and multi-task scenarios on state-based and image-based simulation benchmarks, as well as real-world tasks. CARP achieves competitive success rates, with up to a 10% improvement, and delivers 10x faster inference compared to state-of-the-art policies, establishing a high-performance, efficient, and flexible paradigm for action generation in robotic tasks.
Abstract:Low-dose CT (LDCT) significantly reduces the radiation dose received by patients, thereby decreasing potential health risks. However, dose reduction introduces additional noise and artifacts, adversely affecting image quality and clinical diagnosis. Currently, denoising methods based on convolutional neural networks (CNNs) face limitations in long-range modeling capabilities, while Transformer-based denoising methods, although capable of powerful long-range modeling, suffer from high computational complexity. Furthermore, the denoised images predicted by deep learning-based techniques inevitably exhibit differences in noise distribution compared to Normal-dose CT (NDCT) images, which can also impact the final image quality and diagnostic outcomes. In recent years, the feasibility of applying deep learning methods to low-dose CT imaging has been demonstrated, leading to significant achievements. This paper proposes CT-Mamba, a hybrid convolutional State Space Model for LDCT image denoising. The model combines the local feature extraction advantages of CNNs with Mamba's global modeling capability, enabling it to capture both local details and global context. Additionally, a Mamba-driven deep noise power spectrum (NPS) loss function was designed to guide model training, ensuring that the noise texture of the denoised LDCT images closely resembles that of NDCT images, thereby enhancing overall image quality and diagnostic value. Experimental results have demonstrated that CT-Mamba performs excellently in reducing noise in LDCT images, enhancing detail preservation, and optimizing noise texture distribution, while demonstrating statistically similar radiomics features to those of NDCT images (p > 0.05). The proposed CT-Mamba demonstrates outstanding performance in LDCT denoising and holds promise as a representative approach for applying the Mamba framework to LDCT denoising tasks.
Abstract:The core of self-supervised point cloud learning lies in setting up appropriate pretext tasks, to construct a pre-training framework that enables the encoder to perceive 3D objects effectively. In this paper, we integrate two prevalent methods, masked point modeling (MPM) and 3D-to-2D generation, as pretext tasks within a pre-training framework. We leverage the spatial awareness and precise supervision offered by these two methods to address their respective limitations: ambiguous supervision signals and insensitivity to geometric information. Specifically, the proposed framework, abbreviated as PointCG, consists of a Hidden Point Completion (HPC) module and an Arbitrary-view Image Generation (AIG) module. We first capture visible points from arbitrary views as inputs by removing hidden points. Then, HPC extracts representations of the inputs with an encoder and completes the entire shape with a decoder, while AIG is used to generate rendered images based on the visible points' representations. Extensive experiments demonstrate the superiority of the proposed method over the baselines in various downstream tasks. Our code will be made available upon acceptance.
Abstract:Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning models, lack explicit quantification of intricate and subtle parenchymal structures, including fibroglandular tissue. To address this, we propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures, and then incorporates these structures into a deep-learning-based prediction model via an attention mechanism. Our topology-informed deep learning model, \emph{TopoTxR}, leverages topology to provide enhanced insights into tissues critical for disease pathophysiology and treatment response. We empirically validate \emph{TopoTxR} using the VICTRE phantom breast dataset, showing that the topological structures extracted by our model effectively approximate the breast parenchymal structures. We further demonstrate \emph{TopoTxR}'s efficacy in predicting response to neoadjuvant chemotherapy. Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na\"ive imaging, in patients who respond favorably to therapy as achieving pathological complete response (pCR) versus those who do not. In a comparative analysis with several baselines on the publicly available I-SPY 1 dataset (N=161, including 47 patients with pCR and 114 without) and the Rutgers proprietary dataset (N=120, with 69 patients achieving pCR and 51 not), \emph{TopoTxR} demonstrates a notable improvement, achieving a 2.6\% increase in accuracy and a 4.6\% enhancement in AUC compared to the state-of-the-art method.
Abstract:Visual Question-Answering, a technology that generates textual responses from an image and natural language question, has progressed significantly. Notably, it can aid in tracking and inquiring about daily activities, crucial in healthcare monitoring, especially for elderly patients or those with memory disabilities. However, video poses privacy concerns and has a limited field of view. This paper presents Sensor2Text, a model proficient in tracking daily activities and engaging in conversations using wearable sensors. The approach outlined here tackles several challenges, including low information density in wearable sensor data, insufficiency of single wearable sensors in human activities recognition, and model's limited capacity for Question-Answering and interactive conversations. To resolve these obstacles, transfer learning and student-teacher networks are utilized to leverage knowledge from visual-language models. Additionally, an encoder-decoder neural network model is devised to jointly process language and sensor data for conversational purposes. Furthermore, Large Language Models are also utilized to enable interactive capabilities. The model showcases the ability to identify human activities and engage in Q\&A dialogues using various wearable sensor modalities. It performs comparably to or better than existing visual-language models in both captioning and conversational tasks. To our knowledge, this represents the first model capable of conversing about wearable sensor data, offering an innovative approach to daily activity tracking that addresses privacy and field-of-view limitations associated with current vision-based solutions.
Abstract:Recent research has focused on literary machine translation (MT) as a new challenge in MT. However, the evaluation of literary MT remains an open problem. We contribute to this ongoing discussion by introducing LITEVAL-CORPUS, a paragraph-level parallel corpus comprising multiple verified human translations and outputs from 9 MT systems, which totals over 2k paragraphs and includes 13k annotated sentences across four language pairs, costing 4.5k Euro. This corpus enables us to (i) examine the consistency and adequacy of multiple annotation schemes, (ii) compare evaluations by students and professionals, and (iii) assess the effectiveness of LLM-based metrics. We find that Multidimensional Quality Metrics (MQM), as the de facto standard in non-literary human MT evaluation, is inadequate for literary translation: While Best-Worst Scaling (BWS) with students and Scalar Quality Metric (SQM) with professional translators prefer human translations at rates of ~82% and ~94%, respectively, MQM with student annotators prefers human professional translations over the translations of the best-performing LLMs in only ~42% of cases. While automatic metrics generally show a moderate correlation with human MQM and SQM, they struggle to accurately identify human translations, with rates of at most ~20%. Our overall evaluation indicates that human professional translations consistently outperform LLM translations, where even the most recent LLMs tend to produce more literal and less diverse translations compared to human translations. However, newer LLMs such as GPT-4o perform substantially better than older ones.
Abstract:Multi-view learning methods often focus on improving decision accuracy, while neglecting the decision uncertainty, limiting their suitability for safety-critical applications. To mitigate this, researchers propose trusted multi-view learning methods that estimate classification probabilities and uncertainty by learning the class distributions for each instance. However, these methods assume that the data from each view can effectively differentiate all categories, ignoring the semantic vagueness phenomenon in real-world multi-view data. Our findings demonstrate that this phenomenon significantly suppresses the learning of view-specific evidence in existing methods. We propose a Consistent and Complementary-aware trusted Multi-view Learning (CCML) method to solve this problem. We first construct view opinions using evidential deep neural networks, which consist of belief mass vectors and uncertainty estimates. Next, we dynamically decouple the consistent and complementary evidence. The consistent evidence is derived from the shared portions across all views, while the complementary evidence is obtained by averaging the differing portions across all views. We ensure that the opinion constructed from the consistent evidence strictly aligns with the ground-truth category. For the opinion constructed from the complementary evidence, we allow it for potential vagueness in the evidence. We compare CCML with state-of-the-art baselines on one synthetic and six real-world datasets. The results validate the effectiveness of the dynamic evidence decoupling strategy and show that CCML significantly outperforms baselines on accuracy and reliability. The code is released at https://github.com/Lihong-Liu/CCML.
Abstract:Despite significant ongoing efforts in safety alignment, large language models (LLMs) such as GPT-4 and LLaMA 3 remain vulnerable to jailbreak attacks that can induce harmful behaviors, including those triggered by adversarial suffixes. Building on prior research, we hypothesize that these adversarial suffixes are not mere bugs but may represent features that can dominate the LLM's behavior. To evaluate this hypothesis, we conduct several experiments. First, we demonstrate that benign features can be effectively made to function as adversarial suffixes, i.e., we develop a feature extraction method to extract sample-agnostic features from benign dataset in the form of suffixes and show that these suffixes may effectively compromise safety alignment. Second, we show that adversarial suffixes generated from jailbreak attacks may contain meaningful features, i.e., appending the same suffix to different prompts results in responses exhibiting specific characteristics. Third, we show that such benign-yet-safety-compromising features can be easily introduced through fine-tuning using only benign datasets, i.e., even in the absence of harmful content. This highlights the critical risk posed by dominating benign features in the training data and calls for further research to reinforce LLM safety alignment. Our code and data is available at \url{https://github.com/anonymous}.