Abstract:Graph representation learning (GRL) makes considerable progress recently, which encodes graphs with topological structures into low-dimensional embeddings. Meanwhile, the time-consuming and costly process of annotating graph labels manually prompts the growth of self-supervised learning (SSL) techniques. As a dominant approach of SSL, Contrastive learning (CL) learns discriminative representations by differentiating between positive and negative samples. However, when applied to graph data, it overemphasizes global patterns while neglecting local structures. To tackle the above issue, we propose \underline{Local}-aware \underline{G}raph \underline{C}ontrastive \underline{L}earning (\textbf{\methnametrim}), a self-supervised learning framework that supplementarily captures local graph information with masking-based modeling compared with vanilla contrastive learning. Extensive experiments validate the superiority of \methname against state-of-the-art methods, demonstrating its promise as a comprehensive graph representation learner.
Abstract:In response to legislation mandating companies to honor the \textit{right to be forgotten} by erasing user data, it has become imperative to enable data removal in Vertical Federated Learning (VFL) where multiple parties provide private features for model training. In VFL, data removal, i.e., \textit{machine unlearning}, often requires removing specific features across all samples under privacy guarentee in federated learning. To address this challenge, we propose \methname, a novel Gradient Boosting Decision Tree (GBDT) framework that effectively enables both \textit{instance unlearning} and \textit{feature unlearning} without the need for retraining from scratch. Leveraging a robust GBDT structure, we enable effective data deletion while reducing degradation of model performance. Extensive experimental results on popular datasets demonstrate that our method achieves superior model utility and forgetfulness compared to \textit{state-of-the-art} methods. To our best knowledge, this is the first work that investigates machine unlearning in VFL scenarios.
Abstract:Along with the fast evolution of deep neural networks, the hardware system is also developing rapidly. As a promising solution achieving high scalability and low manufacturing cost, multi-accelerator systems widely exist in data centers, cloud platforms, and SoCs. Thus, a challenging problem arises in multi-accelerator systems: selecting a proper combination of accelerators from available designs and searching for efficient DNN mapping strategies. To this end, we propose MARS, a novel mapping framework that can perform computation-aware accelerator selection, and apply communication-aware sharding strategies to maximize parallelism. Experimental results show that MARS can achieve 32.2% latency reduction on average for typical DNN workloads compared to the baseline, and 59.4% latency reduction on heterogeneous models compared to the corresponding state-of-the-art method.
Abstract:Federated Learning (FL) has emerged as a promising approach for collaborative model training without sharing private data. However, privacy concerns regarding information exchanged during FL have received significant research attention. Gradient Inversion Attacks (GIAs) have been proposed to reconstruct the private data retained by local clients from the exchanged gradients. While recovering private data, the data dimensions and the model complexity increase, which thwart data reconstruction by GIAs. Existing methods adopt prior knowledge about private data to overcome those challenges. In this paper, we first observe that GIAs with gradients from a single iteration fail to reconstruct private data due to insufficient dimensions of leaked gradients, complex model architectures, and invalid gradient information. We investigate a Temporal Gradient Inversion Attack with a Robust Optimization framework, called TGIAs-RO, which recovers private data without any prior knowledge by leveraging multiple temporal gradients. To eliminate the negative impacts of outliers, e.g., invalid gradients for collaborative optimization, robust statistics are proposed. Theoretical guarantees on the recovery performance and robustness of TGIAs-RO against invalid gradients are also provided. Extensive empirical results on MNIST, CIFAR10, ImageNet and Reuters 21578 datasets show that the proposed TGIAs-RO with 10 temporal gradients improves reconstruction performance compared to state-of-the-art methods, even for large batch sizes (up to 128), complex models like ResNet18, and large datasets like ImageNet (224*224 pixels). Furthermore, the proposed attack method inspires further exploration of privacy-preserving methods in the context of FL.
Abstract:Cross-silo federated learning (FL) is a typical FL that enables organizations(e.g., financial or medical entities) to train global models on isolated data. Reasonable incentive is key to encouraging organizations to contribute data. However, existing works on incentivizing cross-silo FL lack consideration of the environmental dynamics (e.g., precision of the trained global model and data owned by uncertain clients during the training processes). Moreover, most of them assume that organizations share private information, which is unrealistic. To overcome these limitations, we propose a novel adaptive mechanism for cross-silo FL, towards incentivizing organizations to contribute data to maximize their long-term payoffs in a real dynamic training environment. The mechanism is based on multi-agent reinforcement learning, which learns near-optimal data contribution strategy from the history of potential games without organizations' private information. Experiments demonstrate that our mechanism achieves adaptive incentive and effectively improves the long-term payoffs for organizations.
Abstract:Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations. GCL can generate graph-level embeddings by maximizing the Mutual Information (MI) between different augmented views of the same graph (positive pairs). However, we identify an obstacle that the optimization of InfoNCE loss only concentrates on a few embeddings dimensions, limiting the distinguishability of embeddings in downstream graph classification tasks. This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue. Specifically, we set the embedding of the first augmented view as the anchor embedding to localize "highlighted" dimensions (i.e., the dimensions contribute most in similarity measurement). Then remove these dimensions in the embeddings of the second augmented view to discover neglected complementary representations. Therefore, the combination of anchor and complementary embeddings significantly improves the performance in downstream tasks. Comprehensive experiments on various benchmark datasets are conducted to demonstrate the effectiveness of GraphCoCo, and the results show that our model outperforms the state-of-the-art methods. Source code will be made publicly available.
Abstract:Liquify is a common technique for image editing, which can be used for image distortion. Due to the uncertainty in the distortion variation, restoring distorted images caused by liquify filter is a challenging task. To edit images in an efficient way, distorted images are expected to be restored automatically. This paper aims at the distorted image restoration, which is characterized by seeking the appropriate warping and completion of a distorted image. Existing methods focus on the hardware assistance or the geometric principle to solve the specific regular deformation caused by natural phenomena, but they cannot handle the irregularity and uncertainty of artificial distortion in this task. To address this issue, we propose a novel generative and discriminative learning method based on deep neural networks, which can learn various reconstruction mappings and represent complex and high-dimensional data. This method decomposes the task into a rectification stage and a refinement stage. The first stage generative network predicts the mapping from the distorted images to the rectified ones. The second stage generative network then further optimizes the perceptual quality. Since there is no available dataset or benchmark to explore this task, we create a Distorted Face Dataset (DFD) by forward distortion mapping based on CelebA dataset. Extensive experimental evaluation on the proposed benchmark and the application demonstrates that our method is an effective way for distorted image restoration.
Abstract:Neural networks are susceptible to catastrophic forgetting. They fail to preserve previously acquired knowledge when adapting to new tasks. Inspired by human associative memory system, we propose a brain-like approach that imitates the associative learning process to achieve continual learning. We design a heuristics mechanism to potentiatively stimulates the model, which guides the model to recall the historical episodes based on the current circumstance and obtained association experience. Besides, a distillation measure is added to depressively alter the efficacy of synaptic transmission, which dampens the feature reconstruction learning for new task. The framework is mediated by potentiation and depression stimulation that play opposing roles in directing synaptic and behavioral plasticity. It requires no access to the original data and is more similar to human cognitive process. Experiments demonstrate the effectiveness of our method in alleviating catastrophic forgetting on continual image reconstruction problems.
Abstract:Neural network classifiers are vulnerable to data poisoning attacks, as attackers can degrade or even manipulate their predictions thorough poisoning only a few training samples. However, the robustness of heuristic defenses is hard to measure. Random selection based defenses can achieve certified robustness by averaging the classifiers' predictions on the sub-datasets sampled from the training set. This paper proposes a framework of random selection based certified defenses against data poisoning attacks. Specifically, we prove that the random selection schemes that satisfy certain conditions are robust against data poisoning attacks. We also derive the analytical form of the certified radius for the qualified random selection schemes. The certified radius of bagging derived by our framework is tighter than the previous work. Our framework allows users to improve robustness by leveraging prior knowledge about the training set and the poisoning model. Given higher level of prior knowledge, we can achieve higher certified accuracy both theoretically and practically. According to the experiments on three benchmark datasets: MNIST 1/7, MNIST, and CIFAR-10, our method outperforms the state-of-the-art.