Zhejiang Lab
Abstract:In the drug discovery process, the low success rate of drug candidate screening often leads to insufficient labeled data, causing the few-shot learning problem in molecular property prediction. Existing methods for few-shot molecular property prediction overlook the sample selection bias, which arises from non-random sample selection in chemical experiments. This bias in data representativeness leads to suboptimal performance. To overcome this challenge, we present a novel method named contextual representation anchor Network (CRA), where an anchor refers to a cluster center of the representations of molecules and serves as a bridge to transfer enriched contextual knowledge into molecular representations and enhance their expressiveness. CRA introduces a dual-augmentation mechanism that includes context augmentation, which dynamically retrieves analogous unlabeled molecules and captures their task-specific contextual knowledge to enhance the anchors, and anchor augmentation, which leverages the anchors to augment the molecular representations. We evaluate our approach on the MoleculeNet and FS-Mol benchmarks, as well as in domain transfer experiments. The results demonstrate that CRA outperforms the state-of-the-art by 2.60% and 3.28% in AUC and $\Delta$AUC-PR metrics, respectively, and exhibits superior generalization capabilities.
Abstract:In multi-task learning, we often encounter the case when the presence of labels across samples exhibits irregular patterns: samples can be fully labeled, partially labeled or unlabeled. Taking drug analysis as an example, multiple toxicity properties of a drug molecule may not be concurrently available due to experimental limitations. It triggers a demand for a new training and inference mechanism that could accommodate irregularly present labels and maximize the utility of any available label information. In this work, we focus on the two-label learning task, and propose a novel training and inference framework, Dual-Label Learning (DLL). The DLL framework formulates the problem into a dual-function system, in which the two functions should simultaneously satisfy standard supervision, structural duality and probabilistic duality. DLL features a dual-tower model architecture that explicitly captures the information exchange between labels, aimed at maximizing the utility of partially available labels in understanding label correlation. During training, label imputation for missing labels is conducted as part of the forward propagation process, while during inference, labels are regarded as unknowns of a bivariate system of equations and are solved jointly. Theoretical analysis guarantees the feasibility of DLL, and extensive experiments are conducted to verify that by explicitly modeling label correlation and maximizing the utility of available labels, our method makes consistently better predictions than baseline approaches by up to a 10% gain in F1-score or MAPE. Remarkably, our method provided with data at a label missing rate as high as 60% can achieve similar or even better results than baseline approaches at a label missing rate of only 10%.
Abstract:Attempting to apply deep learning methods to wood panels bark removal equipment to enhance the quality and efficiency of bark removal is a significant and challenging endeavor. This study develops and tests a deep learning-based wood panels bark removal equipment. In accordance with the practical requirements of sawmills, a wood panels bark removal equipment equipped with a vision inspection system is designed. Based on a substantial collection of wood panel images obtained using the visual inspection system, the first general wood panels semantic segmentation dataset is constructed for training the BiSeNetV1 model employed in this study. Furthermore, the calculation methods and processes for the essential key data required in the bark removal process are presented in detail. Comparative experiments of the BiSeNetV1 model and tests of bark removal effectiveness are conducted in both laboratory and sawmill environments. The results of the comparative experiments indicate that the application of the BiSeNetV1 segmentation model is rational and feasible. The results of the bark removal effectiveness tests demonstrate a significant improvement in both the quality and efficiency of bark removal. The developed equipment fully meets the sawmill's requirements for precision and efficiency in bark removal processing.
Abstract:Both Transformer and Graph Neural Networks (GNNs) have been employed in the domain of learning to rank (LTR). However, these approaches adhere to two distinct yet complementary problem formulations: ranking score regression based on query-webpage pairs, and link prediction within query-webpage bipartite graphs, respectively. While it is possible to pre-train GNNs or Transformers on source datasets and subsequently fine-tune them on sparsely annotated LTR datasets, the distributional shifts between the pair-based and bipartite graph domains present significant challenges in integrating these heterogeneous models into a unified LTR framework at web scale. To address this, we introduce the novel MPGraf model, which leverages a modular and capsule-based pre-training strategy, aiming to cohesively integrate the regression capabilities of Transformers with the link prediction strengths of GNNs. We conduct extensive offline and online experiments to rigorously evaluate the performance of MPGraf.
Abstract:Knowledge graph embedding (KGE) constitutes a foundational task, directed towards learning representations for entities and relations within knowledge graphs (KGs), with the objective of crafting representations comprehensive enough to approximate the logical and symbolic interconnections among entities. In this paper, we define a metric Z-counts to measure the difficulty of training each triple ($<$head entity, relation, tail entity$>$) in KGs with theoretical analysis. Based on this metric, we propose \textbf{CL4KGE}, an efficient \textbf{C}urriculum \textbf{L}earning based training strategy for \textbf{KGE}. This method includes a difficulty measurer and a training scheduler that aids in the training of KGE models. Our approach possesses the flexibility to act as a plugin within a wide range of KGE models, with the added advantage of adaptability to the majority of KGs in existence. The proposed method has been evaluated on popular KGE models, and the results demonstrate that it enhances the state-of-the-art methods. The use of Z-counts as a metric has enabled the identification of challenging triples in KGs, which helps in devising effective training strategies.
Abstract:In recent years, graph neural networks (GNNs) have become increasingly popular for solving NP-hard combinatorial optimization (CO) problems, such as maximum cut and maximum independent set. The core idea behind these methods is to represent a CO problem as a graph and then use GNNs to learn the node/graph embedding with combinatorial information. Although these methods have achieved promising results, given a specific CO problem, the design of GNN architectures still requires heavy manual work with domain knowledge. Existing automated GNNs are mostly focused on traditional graph learning problems, which is inapplicable to solving NP-hard CO problems. To this end, we present a new class of \textbf{AUTO}mated \textbf{G}NNs for solving \textbf{NP}-hard problems, namely \textbf{AutoGNP}. We represent CO problems by GNNs and focus on two specific problems, i.e., mixed integer linear programming and quadratic unconstrained binary optimization. The idea of AutoGNP is to use graph neural architecture search algorithms to automatically find the best GNNs for a given NP-hard combinatorial optimization problem. Compared with existing graph neural architecture search algorithms, AutoGNP utilizes two-hop operators in the architecture search space. Moreover, AutoGNP utilizes simulated annealing and a strict early stopping policy to avoid local optimal solutions. Empirical results on benchmark combinatorial problems demonstrate the superiority of our proposed model.
Abstract:In recent years, there has been notable interest in investigating combinatorial optimization (CO) problems by neural-based framework. An emerging strategy to tackle these challenging problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms, a subject that has attracted considerable attention. Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework. The primary focus of our work is to formulate a more efficient and precise framework for CO by employing decision-focused learning on graphs. Additionally, we introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support. To realize an end-to-end approach, we have designed two cascaded modules: (a) an unsupervised trained graph predictive model, and (b) a solver for quadratic binary unconstrained optimization. Empirical evaluations are conducted on various classical tasks, including maximum cut, maximum independent set, and minimum vertex cover. The experimental results on classical CO problems (i.e. MaxCut, MIS, and MVC) demonstrate the superiority of our method over both the standalone GNN approach and classical methods.
Abstract:This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
Abstract:Dynamic graphs are ubiquitous in the real world, yet there is a lack of suitable theoretical frameworks to effectively extend existing static graph models into the temporal domain. Additionally, for link prediction tasks on discrete dynamic graphs, the requirement of substantial GPU memory to store embeddings of all nodes hinders the scalability of existing models. In this paper, we introduce an Input {\bf S}napshots {\bf F}usion based {\bf Dy}namic {\bf G}raph Neural Network (SFDyG). By eliminating the partitioning of snapshots within the input window, we obtain a multi-graph (more than one edge between two nodes). Subsequently, by introducing a graph denoising problem with the assumption of temporal decayed smoothing, we integrate Hawkes process theory into Graph Neural Networks to model the generated multi-graph. Furthermore, based on the multi-graph, we propose a scalable three-step mini-batch training method and demonstrate its equivalence to full-batch training counterpart. Our experiments, conducted on eight distinct dynamic graph datasets for future link prediction tasks, revealed that SFDyG generally surpasses related methods.
Abstract:Few-shot and zero-shot text classification aim to recognize samples from novel classes with limited labeled samples or no labeled samples at all. While prevailing methods have shown promising performance via transferring knowledge from seen classes to unseen classes, they are still limited by (1) Inherent dissimilarities among classes make the transformation of features learned from seen classes to unseen classes both difficult and inefficient. (2) Rare labeled novel samples usually cannot provide enough supervision signals to enable the model to adjust from the source distribution to the target distribution, especially for complicated scenarios. To alleviate the above issues, we propose a simple and effective strategy for few-shot and zero-shot text classification. We aim to liberate the model from the confines of seen classes, thereby enabling it to predict unseen categories without the necessity of training on seen classes. Specifically, for mining more related unseen category knowledge, we utilize a large pre-trained language model to generate pseudo novel samples, and select the most representative ones as category anchors. After that, we convert the multi-class classification task into a binary classification task and use the similarities of query-anchor pairs for prediction to fully leverage the limited supervision signals. Extensive experiments on six widely used public datasets show that our proposed method can outperform other strong baselines significantly in few-shot and zero-shot tasks, even without using any seen class samples.