Columbia University
Abstract:Retrieval-augmented generation (RAG) is a key technique for leveraging external knowledge and reducing hallucinations in large language models (LLMs). However, RAG still struggles to fully prevent hallucinated responses. To address this, it is essential to identify samples prone to hallucination or guide LLMs toward correct responses, which experts then annotate to develop high-quality datasets for refining LLMs. However, the growing scarcity of such datasets makes their creation challenging. This paper proposes using the vast amount of conversations from widespread LLM usage to build these datasets, training LLMs to avoid hallucination-prone questions while accurately responding to manageable ones. Given the impracticality of expert-annotating all conversation records, the paper introduces AL4RAG, which uses active learning to select the most suitable conversation samples for annotation, optimizing performance within an annotation budget. Additionally, recognizing that traditional active learning methods are not fully compatible with RAG due to unsuitable distance metrics, we develop a novel sample distance measurement for RAG active learning. Extensive experiments show that our method consistently outperforms baselines across multiple metrics.
Abstract:Large language models (LLMs) are increasingly used as automated judges to evaluate recommendation systems, search engines, and other subjective tasks, where relying on human evaluators can be costly, time-consuming, and unscalable. LLMs offer an efficient solution for continuous, automated evaluation. However, since the systems that are built and improved with these judgments are ultimately designed for human use, it is crucial that LLM judgments align closely with human evaluators to ensure such systems remain human-centered. On the other hand, aligning LLM judgments with human evaluators is challenging due to individual variability and biases in human judgments. We propose a simple yet effective framework to align LLM judgments with individual human evaluators or their aggregated judgments, without retraining or fine-tuning the LLM. Our approach learns a linear mapping between the LLM's outputs and human judgments, achieving over 142% average improvement in agreement across 29 tasks with only a small number of calibration examples used for training. Notably, our method works in zero-shot and few-shot settings, exceeds inter-human agreement on four out of six tasks, and enables smaller LLMs to achieve performance comparable to that of larger models.
Abstract:Remote Photoplethysmography (rPPG) is a promising technique to monitor physiological signals such as heart rate from facial videos. However, the labeled facial videos in this research are challenging to collect. Current rPPG research is mainly based on several small public datasets collected in simple environments, which limits the generalization and scale of the AI models. Semi-supervised methods that leverage a small amount of labeled data and abundant unlabeled data can fill this gap for rPPG learning. In this study, a novel semi-supervised learning method named Semi-rPPG that combines curriculum pseudo-labeling and consistency regularization is proposed to extract intrinsic physiological features from unlabelled data without impairing the model from noises. Specifically, a curriculum pseudo-labeling strategy with signal-to-noise ratio (SNR) criteria is proposed to annotate the unlabelled data while adaptively filtering out the low-quality unlabelled data. Besides, a novel consistency regularization term for quasi-periodic signals is proposed through weak and strong augmented clips. To benefit the research on semi-supervised rPPG measurement, we establish a novel semi-supervised benchmark for rPPG learning through intra-dataset and cross-dataset evaluation on four public datasets. The proposed Semi-rPPG method achieves the best results compared with three classical semi-supervised methods under different protocols. Ablation studies are conducted to prove the effectiveness of the proposed methods.
Abstract:Recently, mobile AI agents have gained increasing attention. Given a task, mobile AI agents can interact with mobile devices in multiple steps and finally form a GUI flow that solves the task. However, existing agents tend to focus on most task-relevant elements at each step, leading to local optimal solutions and ignoring the overall GUI flow. To address this issue, we constructed a training dataset called MobileReach, which breaks the task into page reaching and operation subtasks. Furthermore, we propose ReachAgent, a two-stage framework that focuses on improving its task-completion abilities. It utilizes the page reaching and page operation subtasks, along with reward-based preference GUI flows, to further enhance the agent. Experimental results show that ReachAgent significantly improves the IoU Acc and Text Acc by 7.12% and 7.69% on the step-level and 4.72% and 4.63% on the task-level compared to the SOTA agent. Our data and code will be released upon acceptance.
Abstract:Large language models (LLMs) have shown continuously improving multilingual capabilities, and even small-scale open-source models have demonstrated rapid performance enhancement. In this paper, we systematically explore the abilities of open LLMs with less than ten billion parameters to handle multilingual machine translation (MT) tasks. We conduct comprehensive evaluations on six popular LLMs and find that models like Gemma2-9B exhibit impressive multilingual translation capabilities. We then introduce the Parallel-First Monolingual-Second (PFMS) data mixing strategy in the continual pretraining stage to further enhance the MT performance and present GemmaX2-28, a 9B model achieving top-tier multilingual translation performance across 28 languages. Specifically, GemmaX2-28 consistently outperforms the state-of-the-art (SOTA) models such as TowerInstruct and XALMA and achieves competitive performance with Google Translate and GPT-4-turbo.
Abstract:As a type of multi-dimensional sequential data, the spatial and temporal dependencies of electroencephalogram (EEG) signals should be further investigated. Thus, in this paper, we propose a novel spatial-temporal progressive attention model (STPAM) to improve EEG classification in rapid serial visual presentation (RSVP) tasks. STPAM first adopts three distinct spatial experts to learn the spatial topological information of brain regions progressively, which is used to minimize the interference of irrelevant brain regions. Concretely, the former expert filters out EEG electrodes in the relative brain regions to be used as prior knowledge for the next expert, ensuring that the subsequent experts gradually focus their attention on information from significant EEG electrodes. This process strengthens the effect of the important brain regions. Then, based on the above-obtained feature sequence with spatial information, three temporal experts are adopted to capture the temporal dependence by progressively assigning attention to the crucial EEG slices. Except for the above EEG classification method, in this paper, we build a novel Infrared RSVP EEG Dataset (IRED) which is based on dim infrared images with small targets for the first time, and conduct extensive experiments on it. The results show that our STPAM can achieve better performance than all the compared methods.
Abstract:Many real-world problems, such as those with fairness constraints, involve complex expectation constraints and large datasets, necessitating the design of efficient stochastic methods to solve them. Most existing research focuses on cases with no {constraint} or easy-to-project constraints or deterministic constraints. In this paper, we consider nonconvex nonsmooth stochastic optimization problems with expectation constraints, for which we build a novel exact penalty model. We first show the relationship between the penalty model and the original problem. Then on solving the penalty problem, we present a single-loop SPIDER-type stochastic subgradient method, which utilizes the subgradients of both the objective and constraint functions, as well as the constraint function value at each iteration. Under certain regularity conditions (weaker than Slater-type constraint qualification or strong feasibility assumed in existing works), we establish an iteration complexity result of $O(\epsilon^{-4})$ to reach a near-$\epsilon$ stationary point of the penalized problem in expectation, matching the lower bound for such tasks. Building on the exact penalization, an $(\epsilon,\epsilon)$-KKT point of the original problem is obtained. For a few scenarios, our complexity of either the {objective} sample subgradient or the constraint sample function values can be lower than the state-of-the-art results by a factor of $\epsilon^{-2}$. Moreover, on solving two fairness-constrained problems, our method is significantly (up to 466 times) faster than the state-of-the-art algorithms, including switching subgradient method and inexact proximal point methods.
Abstract:Terahertz (THz) communication combined with ultra-massive multiple-input multiple-output (UM-MIMO) technology is promising for 6G wireless systems, where fast and precise direction-of-arrival (DOA) estimation is crucial for effective beamforming. However, finding DOAs in THz UM-MIMO systems faces significant challenges: while reducing hardware complexity, the hybrid analog-digital (HAD) architecture introduces inherent difficulties in spatial information acquisition the large-scale antenna array causes significant deviations in eigenvalue decomposition results; and conventional two-dimensional DOA estimation methods incur prohibitively high computational overhead, hindering fast and accurate realization. To address these challenges, we propose a hybrid dynamic subarray (HDS) architecture that strategically divides antenna elements into subarrays, ensuring phase differences between subarrays correlate exclusively with single-dimensional DOAs. Leveraging this architectural innovation, we develop two efficient algorithms for DOA estimation: a reduced-dimension MUSIC (RD-MUSIC) algorithm that enables fast processing by correcting large-scale array estimation bias, and an improved version that further accelerates estimation by exploiting THz channel sparsity to obtain initial closed-form solutions through specialized two-RF-chain configuration. Furthermore, we develop a theoretical framework through Cram\'{e}r-Rao lower bound analysis, providing fundamental insights for different HDS configurations. Extensive simulations demonstrate that our solution achieves both superior estimation accuracy and computational efficiency, making it particularly suitable for practical THz UM-MIMO systems.
Abstract:Background: The radiation oncology clinical practice involves many steps relying on the dynamic interplay of abundant text data. Large language models have displayed remarkable capabilities in processing complex text information. But their direct applications in specific fields like radiation oncology remain underexplored. Purpose: This study aims to investigate whether fine-tuning LLMs with domain knowledge can improve the performance on Task (1) treatment regimen generation, Task (2) treatment modality selection (photon, proton, electron, or brachytherapy), and Task (3) ICD-10 code prediction in radiation oncology. Methods: Data for 15,724 patient cases were extracted. Cases where patients had a single diagnostic record, and a clearly identifiable primary treatment plan were selected for preprocessing and manual annotation to have 7,903 cases of the patient diagnosis, treatment plan, treatment modality, and ICD-10 code. Each case was used to construct a pair consisting of patient diagnostics details and an answer (treatment regimen, treatment modality, or ICD-10 code respectively) for the supervised fine-tuning of these three tasks. Open source LLaMA2-7B and Mistral-7B models were utilized for the fine-tuning with the Low-Rank Approximations method. Accuracy and ROUGE-1 score were reported for the fine-tuned models and original models. Clinical evaluation was performed on Task (1) by radiation oncologists, while precision, recall, and F-1 score were evaluated for Task (2) and (3). One-sided Wilcoxon signed-rank tests were used to statistically analyze the results. Results: Fine-tuned LLMs outperformed original LLMs across all tasks with p-value <= 0.001. Clinical evaluation demonstrated that over 60% of the fine-tuned LLMs-generated treatment regimens were clinically acceptable. Precision, recall, and F1-score showed improved performance of fine-tuned LLMs.
Abstract:Direction-of-arrival (DOA) estimation for incoherently distributed (ID) sources is essential in multipath wireless communication scenarios, yet it remains challenging due to the combined effects of angular spread and gain-phase uncertainties in antenna arrays. This paper presents a two-stage sparse DOA estimation framework, transitioning from partial calibration to full potential, under the generalized array manifold (GAM) framework. In the first stage, coarse DOA estimates are obtained by exploiting the output from a subset of partly-calibrated arrays (PCAs). In the second stage, these estimates are utilized to determine and compensate for gain-phase uncertainties across all array elements. Then a sparse total least-squares optimization problem is formulated and solved via alternating descent to refine the DOA estimates. Simulation results demonstrate that the proposed method attained improved estimation accuracy compared to existing approaches, while maintaining robustness against both noise and angular spread effects in practical multipath environments.