Columbia University
Abstract:The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
Abstract:Large language models with retrieval-augmented generation encounter a pivotal challenge in intricate retrieval tasks, e.g., multi-hop question answering, which requires the model to navigate across multiple documents and generate comprehensive responses based on fragmented information. To tackle this challenge, we introduce a novel Knowledge Graph-based RAG framework with a hierarchical knowledge retriever, termed KG-Retriever. The retrieval indexing in KG-Retriever is constructed on a hierarchical index graph that consists of a knowledge graph layer and a collaborative document layer. The associative nature of graph structures is fully utilized to strengthen intra-document and inter-document connectivity, thereby fundamentally alleviating the information fragmentation problem and meanwhile improving the retrieval efficiency in cross-document retrieval of LLMs. With the coarse-grained collaborative information from neighboring documents and concise information from the knowledge graph, KG-Retriever achieves marked improvements on five public QA datasets, showing the effectiveness and efficiency of our proposed RAG framework.
Abstract:Current visible-infrared cross-modality person re-identification research has only focused on exploring the bi-modality mutual retrieval paradigm, and we propose a new and more practical mix-modality retrieval paradigm. Existing Visible-Infrared person re-identification (VI-ReID) methods have achieved some results in the bi-modality mutual retrieval paradigm by learning the correspondence between visible and infrared modalities. However, significant performance degradation occurs due to the modality confusion problem when these methods are applied to the new mix-modality paradigm. Therefore, this paper proposes a Mix-Modality person re-identification (MM-ReID) task, explores the influence of modality mixing ratio on performance, and constructs mix-modality test sets for existing datasets according to the new mix-modality testing paradigm. To solve the modality confusion problem in MM-ReID, we propose a Cross-Identity Discrimination Harmonization Loss (CIDHL) adjusting the distribution of samples in the hyperspherical feature space, pulling the centers of samples with the same identity closer, and pushing away the centers of samples with different identities while aggregating samples with the same modality and the same identity. Furthermore, we propose a Modality Bridge Similarity Optimization Strategy (MBSOS) to optimize the cross-modality similarity between the query and queried samples with the help of the similar bridge sample in the gallery. Extensive experiments demonstrate that compared to the original performance of existing cross-modality methods on MM-ReID, the addition of our CIDHL and MBSOS demonstrates a general improvement.
Abstract:Bi-level optimization has achieved considerable success in contemporary machine learning applications, especially for given proper hyperparameters. However, due to the two-level optimization structure, commonly, researchers focus on two types of bi-level optimization methods: approximate implicit differentiation (AID)-based and iterative differentiation (ITD)-based approaches. ITD-based methods can be readily transformed into single-level optimization problems, facilitating the study of their generalization capabilities. In contrast, AID-based methods cannot be easily transformed similarly but must stay in the two-level structure, leaving their generalization properties enigmatic. In this paper, although the outer-level function is nonconvex, we ascertain the uniform stability of AID-based methods, which achieves similar results to a single-level nonconvex problem. We conduct a convergence analysis for a carefully chosen step size to maintain stability. Combining the convergence and stability results, we give the generalization ability of AID-based bi-level optimization methods. Furthermore, we carry out an ablation study of the parameters and assess the performance of these methods on real-world tasks. Our experimental results corroborate the theoretical findings, demonstrating the effectiveness and potential applications of these methods.
Abstract:Molecule discovery is a pivotal research field, impacting everything from the medicines we take to the materials we use. Recently, Large Language Models (LLMs) have been widely adopted in molecule understanding and generation, yet the alignments between molecules and their corresponding captions remain a significant challenge. Previous endeavours often treat the molecule as a general SMILES string or molecular graph, neglecting the fine-grained alignments between the molecular sub-structures and the descriptive textual phrases, which are crucial for accurate and explainable predictions. In this case, we introduce MolReFlect, a novel teacher-student framework designed to contextually perform the molecule-caption alignments in a fine-grained way. Our approach initially leverages a larger teacher LLM to label the detailed alignments by directly extracting critical phrases from molecule captions or SMILES strings and implying them to corresponding sub-structures or characteristics. To refine these alignments, we propose In-Context Selective Reflection, which retrieves previous extraction results as context examples for teacher LLM to reflect and lets a smaller student LLM select from in-context reflection and previous extraction results. Finally, we enhance the learning process of the student LLM through Chain-of-Thought In-Context Molecule Tuning, integrating the fine-grained alignments and the reasoning processes within the Chain-of-Thought format. Our experimental results demonstrate that MolReFlect enables LLMs like Mistral-7B to significantly outperform the previous baselines, achieving SOTA performance on the ChEBI-20 dataset. This advancement not only enhances the generative capabilities of LLMs in the molecule-caption translation task, but also contributes to a more explainable framework.
Abstract:This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks. With the increasing integration of LLMs in critical sectors such as healthcare, finance, and public administration, ensuring these models are resilient to adversarial attacks is vital for preventing misuse and upholding ethical standards. This competition focused on two distinct tracks designed to evaluate and enhance the robustness of LLM security frameworks. Track 1 tasked participants with developing automated methods to probe LLM vulnerabilities by eliciting undesirable responses, effectively testing the limits of existing safety protocols within LLMs. Participants were challenged to devise techniques that could bypass content safeguards across a diverse array of scenarios, from offensive language to misinformation and illegal activities. Through this process, Track 1 aimed to deepen the understanding of LLM vulnerabilities and provide insights for creating more resilient models.
Abstract:We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.
Abstract:Fine-tuning large language models (LLMs) poses significant memory challenges, as the back-propagation process demands extensive resources, especially with growing model sizes. Recent work, MeZO, addresses this issue using a zeroth-order (ZO) optimization method, which reduces memory consumption by matching the usage to the inference phase. However, MeZO experiences slow convergence due to varying curvatures across model parameters. To overcome this limitation, we introduce HELENE, a novel scalable and memory-efficient optimizer that integrates annealed A-GNB gradients with a diagonal Hessian estimation and layer-wise clipping, serving as a second-order pre-conditioner. This combination allows for faster and more stable convergence. Our theoretical analysis demonstrates that HELENE improves convergence rates, particularly for models with heterogeneous layer dimensions, by reducing the dependency on the total parameter space dimension. Instead, the method scales with the largest layer dimension, making it highly suitable for modern LLM architectures. Experimental results on RoBERTa-large and OPT-1.3B across multiple tasks show that HELENE achieves up to a 20x speedup compared to MeZO, with average accuracy improvements of 1.5%. Furthermore, HELENE remains compatible with both full parameter tuning and parameter-efficient fine-tuning (PEFT), outperforming several state-of-the-art optimizers. The codes will be released after reviewing.
Abstract:Artificial Intelligence (AI) has become essential in modern healthcare, with large language models (LLMs) offering promising advances in clinical decision-making. Traditional model-based approaches, including those leveraging in-context demonstrations and those with specialized medical fine-tuning, have demonstrated strong performance in medical language processing but struggle with real-time adaptability, multi-step reasoning, and handling complex medical tasks. Agent-based AI systems address these limitations by incorporating reasoning traces, tool selection based on context, knowledge retrieval, and both short- and long-term memory. These additional features enable the medical AI agent to handle complex medical scenarios where decision-making should be built on real-time interaction with the environment. Therefore, unlike conventional model-based approaches that treat medical queries as isolated questions, medical AI agents approach them as complex tasks and behave more like human doctors. In this paper, we study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation. In particular, we consider the emergent o1 model and examine its impact on agents' reasoning, tool-use adaptability, and real-time information retrieval across diverse clinical scenarios, including high-stakes settings such as intensive care units (ICUs). Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools that support better patient outcomes and decision-making efficacy in clinical practice.
Abstract:Deep learning underpins most of the currently advanced natural language processing (NLP) tasks such as textual classification, neural machine translation (NMT), abstractive summarization and question-answering (QA). However, the robustness of the models, particularly QA models, against adversarial attacks is a critical concern that remains insufficiently explored. This paper introduces QA-Attack (Question Answering Attack), a novel word-level adversarial strategy that fools QA models. Our attention-based attack exploits the customized attention mechanism and deletion ranking strategy to identify and target specific words within contextual passages. It creates deceptive inputs by carefully choosing and substituting synonyms, preserving grammatical integrity while misleading the model to produce incorrect responses. Our approach demonstrates versatility across various question types, particularly when dealing with extensive long textual inputs. Extensive experiments on multiple benchmark datasets demonstrate that QA-Attack successfully deceives baseline QA models and surpasses existing adversarial techniques regarding success rate, semantics changes, BLEU score, fluency and grammar error rate.