Abstract:Hallucination in Natural Language Generation (NLG) is like the elephant in the room, obvious but often overlooked until recent achievements significantly improved the fluency and grammatical accuracy of generated text. For Large Language Models (LLMs), hallucinations can happen in various downstream tasks and casual conversations, which need accurate assessment to enhance reliability and safety. However, current studies on hallucination evaluation vary greatly, and people still find it difficult to sort out and select the most appropriate evaluation methods. Moreover, as NLP research gradually shifts to the domain of LLMs, it brings new challenges to this direction. This paper provides a comprehensive survey on the evolvement of hallucination evaluation methods, aiming to address three key aspects: 1) Diverse definitions and granularity of facts; 2) The categories of automatic evaluators and their applicability; 3) Unresolved issues and future directions.
Abstract:Due to the subjectivity of the summarization, it is a good practice to have more than one gold summary for each training document. However, many modern large-scale abstractive summarization datasets have only one-to-one samples written by different human with different styles. The impact of this phenomenon is understudied. We formulate the differences among possible multiple expressions summarizing the same content as subjective bias and examine the role of this bias in the context of abstractive summarization. In this paper a lightweight and effective method to extract the feature embeddings of subjective styles is proposed. Results of summarization models trained on style-clustered datasets show that there are certain types of styles that lead to better convergence, abstraction and generalization. The reproducible code and generated summaries are available online.