Abstract:Generating rationales that justify scoring decisions has been a promising way to facilitate explainability in automated scoring systems. However, existing methods do not match the accuracy of classifier-based methods. Plus, the generated rationales often contain hallucinated information. To address these issues, we propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with classifier-based black-box scoring systems. We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree. We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data. Finally, we utilise the generated synthetic data to calibrate LLMs through a two-step training process: supervised fine-tuning and preference optimization. Extensive experimental results demonstrate that our framework achieves a 38% assessment performance improvement in the QWK score compared to prior work while producing higher-quality rationales, as recognised by human evaluators and LLMs. Our work sheds light on the effectiveness of performing preference optimization using synthetic preference data obtained from thought tree paths.
Abstract:Many commercial and open-source models claim to detect machine-generated text with very high accuracy (99\% or higher). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging -- lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machine-generated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-of-domain and adversarial robustness of 8 open- and 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our dataset and tools to encourage further exploration into detector robustness.
Abstract:Task embedding, a meta-learning technique that captures task-specific information, has become prevalent, especially in areas such as multi-task learning, model editing, and interpretability. However, it faces challenges with the emergence of prompt-guided Large Language Models (LLMs) operating in a gradientfree manner. Existing task embedding methods rely on fine-tuned, task-specific language models, which hinders the adaptability of task embeddings across diverse models, especially prompt-based LLMs. To unleash the power of task embedding in the era of LLMs, we propose a framework for unified task embeddings (FUTE), harmonizing task embeddings from various models, including smaller language models and LLMs with varied prompts, within a single vector space. Such uniformity enables the comparison and analysis of similarities amongst different models, extending the scope and utility of existing task embedding methods in addressing multi-model scenarios, whilst maintaining their performance to be comparable to architecture-specific methods.
Abstract:Existing datasets for narrative understanding often fail to represent the complexity and uncertainty of relationships in real-life social scenarios. To address this gap, we introduce a new benchmark, Conan, designed for extracting and analysing intricate character relation graphs from detective narratives. Specifically, we designed hierarchical relationship categories and manually extracted and annotated role-oriented relationships from the perspectives of various characters, incorporating both public relationships known to most characters and secret ones known to only a few. Our experiments with advanced Large Language Models (LLMs) like GPT-3.5, GPT-4, and Llama2 reveal their limitations in inferencing complex relationships and handling longer narratives. The combination of the Conan dataset and our pipeline strategy is geared towards understanding the ability of LLMs to comprehend nuanced relational dynamics in narrative contexts.
Abstract:Neural Theory-of-Mind (N-ToM), machine's ability to understand and keep track of the mental states of others, is pivotal in developing socially intelligent agents. However, prevalent N-ToM benchmarks have several shortcomings, including the presence of ambiguous and artificial narratives, absence of personality traits and preferences, a lack of questions addressing characters' psychological mental states, and limited diversity in the questions posed. In response to these issues, we construct OpenToM, a new benchmark for assessing N-ToM with (1) longer and clearer narrative stories, (2) characters with explicit personality traits, (3) actions that are triggered by character intentions, and (4) questions designed to challenge LLMs' capabilities of modeling characters' mental states of both the physical and psychological world. Using OpenToM, we reveal that state-of-the-art LLMs thrive at modeling certain aspects of mental states in the physical world but fall short when tracking characters' mental states in the psychological world.
Abstract:Representing texts as information about entities has long been deemed effective in event reasoning. We propose OpenPI2.0, an improved dataset for tracking entity states in procedural texts. OpenPI2.0 features not only canonicalized entities that facilitate evaluation, but also salience annotations including both manual labels and automatic predictions. Regarding entity salience, we provide a survey on annotation subjectivity, modeling feasibility, and downstream applications in tasks such as question answering and classical planning.
Abstract:Recent work has shown that prompting language models with code-like representations of natural language leads to performance improvements on structured reasoning tasks. However, such tasks comprise only a small subset of all natural language tasks. In our work, we seek to answer whether or not code-prompting is the preferred way of interacting with language models in general. We compare code and text prompts across three popular GPT models (davinci, code-davinci-002, and text-davinci-002) on a broader selection of tasks (e.g., QA, sentiment, summarization) and find that with few exceptions, code prompts do not consistently outperform text prompts. Furthermore, we show that the style of code prompt has a large effect on performance for some but not all tasks and that fine-tuning on text instructions leads to better relative performance of code prompts.
Abstract:Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction(IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface.
Abstract:Entities and events have long been regarded as the crux of machine reasoning. Specifically, procedural texts have received increasing attention due to the dynamic nature of involved entities and events. Existing work has exclusively focused on entity state tracking (e.g., the temperature of a pan) or counterfactual event reasoning (e.g., how likely am I to burn myself by touching the pan), while these two tasks are tightly intertwined. In this work, we propose CREPE, the first benchmark on causal reasoning about event plausibility based on entity states. We experiment with strong large language models and show that most models including GPT3 perform close to chance of .30 F1, lagging far behind the human performance of .87 F1. Inspired by the finding that structured representations such as programming languages benefits event reasoning as a prompt to code language models such as Codex, we creatively inject the causal relations between entities and events through intermediate variables and boost the performance to .67 to .72 F1. Our proposed event representation not only allows for knowledge injection, but also marks the first successful attempt of chain-of-thought reasoning with code language models.