Abstract:Named entity recognition (NER) stands as a fundamental and pivotal task within the realm of Natural Language Processing. Particularly within the domain of Biomedical Method NER, this task presents notable challenges, stemming from the continual influx of domain-specific terminologies in scholarly literature. Current research in Biomedical Method (BioMethod) NER suffers from a scarcity of resources, primarily attributed to the intricate nature of methodological concepts, which necessitate a profound understanding for precise delineation. In this study, we propose a novel dataset for biomedical method entity recognition, employing an automated BioMethod entity recognition and information retrieval system to assist human annotation. Furthermore, we comprehensively explore a range of conventional and contemporary open-domain NER methodologies, including the utilization of cutting-edge large-scale language models (LLMs) customised to our dataset. Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns pertaining to biomedical methods. Remarkably, the approach, leveraging the modestly sized ALBERT model (only 11MB), in conjunction with conditional random fields (CRF), achieves state-of-the-art (SOTA) performance.
Abstract:Radiology Report Generation (RRG) has achieved significant progress with the advancements of multimodal generative models. However, the evaluation in the domain suffers from a lack of fair and robust metrics. We reveal that, high performance on RRG with existing lexical-based metrics (e.g. BLEU) might be more of a mirage - a model can get a high BLEU only by learning the template of reports. This has become an urgent problem for RRG due to the highly patternized nature of these reports. In this work, we un-intuitively approach this problem by proposing the Layman's RRG framework, a layman's terms-based dataset, evaluation and training framework that systematically improves RRG with day-to-day language. We first contribute the translated Layman's terms dataset. Building upon the dataset, we then propose a semantics-based evaluation method, which is proved to mitigate the inflated numbers of BLEU and provides fairer evaluation. Last, we show that training on the layman's terms dataset encourages models to focus on the semantics of the reports, as opposed to overfitting to learning the report templates. We reveal a promising scaling law between the number of training examples and semantics gain provided by our dataset, compared to the inverse pattern brought by the original formats. Our code is available at \url{https://github.com/hegehongcha/LaymanRRG}.
Abstract:Large Language Models (LLMs) possess the remarkable capability to understand human instructions and generate high-quality text, enabling them to act as agents that simulate human behaviours. This capability allows LLMs to emulate human beings in a more advanced manner, beyond merely replicating simple human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from several aspects. In this work, we introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters that can be freely customised according to different user preferences. The customisable framework is helpful for designing customisable characters and role-playing agents according to human's preferences. We first propose the SimsConv dataset, which comprises 68 different customised characters, 1,360 multi-turn role-playing dialogues, and encompasses 13,971 interaction dialogues in total. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building on these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates different real-world scenes and topic-specific character interaction dialogues, simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results show that our proposed framework achieves desirable performance and provides helpful guideline for building better simulacra of human beings in the future. Our data and code are available at https://github.com/Bernard-Yang/SimsChat.
Abstract:The long-standing one-to-many problem of gold standard responses in open-domain dialogue systems presents challenges for automatic evaluation metrics. Though prior works have demonstrated some success by applying powerful Large Language Models (LLMs), existing approaches still struggle with the one-to-many problem, and exhibit subpar performance in domain-specific scenarios. We assume the commonsense reasoning biases within LLMs may hinder their performance in domainspecific evaluations. To address both issues, we propose a novel framework SLIDE (Small and Large Integrated for Dialogue Evaluation), that leverages both a small, specialised model (SLM), and LLMs for the evaluation of open domain dialogues. Our approach introduces several techniques: (1) Contrastive learning to differentiate between robust and non-robust response embeddings; (2) A novel metric for semantic sensitivity that combines embedding cosine distances with similarity learned through neural networks, and (3) a strategy for incorporating the evaluation results from both the SLM and LLMs. Our empirical results demonstrate that our approach achieves state-of-the-art performance in both the classification and evaluation tasks, and additionally the SLIDE evaluator exhibits better correlation with human judgements. Our code is available at https:// github.com/hegehongcha/SLIDE-ACL2024.
Abstract:Automatic open-domain dialogue evaluation has attracted increasing attention. Trainable evaluation metrics are commonly trained with true positive and randomly selected negative responses, resulting in a tendency for them to assign a higher score to the responses that share higher content similarity with a given context. However, adversarial negative responses possess high content similarity with the contexts whilst being semantically different. Therefore, existing evaluation metrics are not robust enough to evaluate such responses, resulting in low correlations with human judgments. While recent studies have shown some efficacy in utilizing Large Language Models (LLMs) for open-domain dialogue evaluation, they still encounter challenges in effectively handling adversarial negative examples. In this paper, we propose a simple yet effective framework for open-domain dialogue evaluation, which combines domain-specific language models (SLMs) with LLMs. The SLMs can explicitly incorporate Abstract Meaning Representation (AMR) graph information of the dialogue through a gating mechanism for enhanced semantic representation learning. The evaluation result of SLMs and AMR graph information are plugged into the prompt of LLM, for the enhanced in-context learning performance. Experimental results on open-domain dialogue evaluation tasks demonstrate the superiority of our method compared to a wide range of state-of-the-art baselines, especially in discriminating adversarial negative responses. Our code is available at https://github.com/Bernard-Yang/SIMAMR.
Abstract:Multi-modal information retrieval (MMIR) is a rapidly evolving field, where significant progress, particularly in image-text pairing, has been made through advanced representation learning and cross-modality alignment research. However, current benchmarks for evaluating MMIR performance in image-text pairing within the scientific domain show a notable gap, where chart and table images described in scholarly language usually do not play a significant role. To bridge this gap, we develop a specialised scientific MMIR (SciMMIR) benchmark by leveraging open-access paper collections to extract data relevant to the scientific domain. This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions in scientific documents. We further annotate the image-text pairs with two-level subset-subcategory hierarchy annotations to facilitate a more comprehensive evaluation of the baselines. We conducted zero-shot and fine-tuning evaluations on prominent multi-modal image-captioning and visual language models, such as CLIP and BLIP. Our analysis offers critical insights for MMIR in the scientific domain, including the impact of pre-training and fine-tuning settings and the influence of the visual and textual encoders. All our data and checkpoints are publicly available at https://github.com/Wusiwei0410/SciMMIR.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, their remarkable parameter size and their impressive high requirement of computing resources pose challenges for their practical deployment. Recent research has revealed that specific capabilities of LLMs, such as numerical reasoning, can be transferred to smaller models through distillation. Some studies explore the potential of leveraging LLMs to perform table-based reasoning. Nevertheless, prior to our work, there has been no investigation into the prospect of specialising table reasoning skills in smaller models specifically tailored for table-to-text generation tasks. In this paper, we propose a novel table-based reasoning distillation, with the aim of distilling distilling LLMs into tailored, smaller models specifically designed for table-based reasoning task. Experimental results have shown that a 0.22 billion parameter model (Flan-T5-base) fine-tuned using distilled data, not only achieves a significant improvement compared to traditionally fine-tuned baselines but also surpasses specific LLMs like gpt-3.5-turbo on the scientific table-to-text generation dataset (SciGen). The code and data are released in https://github.com/Bernard-Yang/TableDistill.
Abstract:Medical Dialogue Generation serves a critical role in telemedicine by facilitating the dissemination of medical expertise to patients. Existing studies focus on incorporating textual representations, which have limited their ability to represent the semantics of text, such as ignoring important medical entities. To enhance the model's understanding of the textual semantics and the medical knowledge including entities and relations, we introduce the use of Abstract Meaning Representations (AMR) to construct graphical representations that delineate the roles of language constituents and medical entities within the dialogues. In this paper, We propose a novel framework that models dialogues between patients and healthcare professionals using AMR graphs, where the neural networks incorporate textual and graphical knowledge with a dual attention mechanism. Experimental results show that our framework outperforms strong baseline models in medical dialogue generation, demonstrating the effectiveness of AMR graphs in enhancing the representations of medical knowledge and logical relationships. Furthermore, to support future research in this domain, we provide the corresponding source code at https://github.com/Bernard-Yang/MedDiaAMR.
Abstract:The long-standing one-to-many issue of the open-domain dialogues poses significant challenges for automatic evaluation methods, i.e., there may be multiple suitable responses which differ in semantics for a given conversational context. To tackle this challenge, we propose a novel learning-based automatic evaluation metric (CMN), which can robustly evaluate open-domain dialogues by augmenting Conditional Variational Autoencoders (CVAEs) with a Next Sentence Prediction (NSP) objective and employing Mutual Information (MI) to model the semantic similarity of text in the latent space. Experimental results on two open-domain dialogue datasets demonstrate the superiority of our method compared with a wide range of baselines, especially in handling responses which are distant to the golden reference responses in semantics.
Abstract:Fairness has become a trending topic in natural language processing (NLP), which addresses biases targeting certain social groups such as genders and religions. However, regional bias in language models (LMs), a long-standing global discrimination problem, still remains unexplored. This paper bridges the gap by analysing the regional bias learned by the pre-trained language models that are broadly used in NLP tasks. In addition to verifying the existence of regional bias in LMs, we find that the biases on regional groups can be strongly influenced by the geographical clustering of the groups. We accordingly propose a HiErarchical Regional Bias evaluation method (HERB) utilising the information from the sub-region clusters to quantify the bias in pre-trained LMs. Experiments show that our hierarchical metric can effectively evaluate the regional bias with respect to comprehensive topics and measure the potential regional bias that can be propagated to downstream tasks. Our codes are available at https://github.com/Bernard-Yang/HERB.