Abstract:The bottleneck associated with the key-value(KV) cache presents a significant challenge during the inference processes of large language models. While depth pruning accelerates inference, it requires extensive recovery training, which can take up to two weeks. On the other hand, width pruning retains much of the performance but offers slight speed gains. To tackle these challenges, we propose KVPruner to improve model efficiency while maintaining performance. Our method uses global perplexity-based analysis to determine the importance ratio for each block and provides multiple strategies to prune non-essential KV channels within blocks. Compared to the original model, KVPruner reduces runtime memory usage by 50% and boosts throughput by over 35%. Additionally, our method requires only two hours of LoRA fine-tuning on small datasets to recover most of the performance.
Abstract:Named entity recognition (NER) stands as a fundamental and pivotal task within the realm of Natural Language Processing. Particularly within the domain of Biomedical Method NER, this task presents notable challenges, stemming from the continual influx of domain-specific terminologies in scholarly literature. Current research in Biomedical Method (BioMethod) NER suffers from a scarcity of resources, primarily attributed to the intricate nature of methodological concepts, which necessitate a profound understanding for precise delineation. In this study, we propose a novel dataset for biomedical method entity recognition, employing an automated BioMethod entity recognition and information retrieval system to assist human annotation. Furthermore, we comprehensively explore a range of conventional and contemporary open-domain NER methodologies, including the utilization of cutting-edge large-scale language models (LLMs) customised to our dataset. Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns pertaining to biomedical methods. Remarkably, the approach, leveraging the modestly sized ALBERT model (only 11MB), in conjunction with conditional random fields (CRF), achieves state-of-the-art (SOTA) performance.