Fudan university
Abstract:We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
Abstract:Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
Abstract:Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
Abstract:High-fidelity generative models have narrowed the perceptual gap between synthetic and real images, posing serious threats to media security. Most existing AI-generated image (AIGI) detectors rely on artifact-based classification and struggle to generalize to evolving generative traces. In contrast, human judgment relies on stable real-world regularities, with deviations from the human cognitive manifold serving as a more generalizable signal of forgery. Motivated by this insight, we reformulate AIGI detection as a Reference-Comparison problem that verifies consistency with the real-image manifold rather than fitting specific forgery cues. We propose MIRROR (Manifold Ideal Reference ReconstructOR), a framework that explicitly encodes reality priors using a learnable discrete memory bank. MIRROR projects an input into a manifold-consistent ideal reference via sparse linear combination, and uses the resulting residuals as robust detection signals. To evaluate whether detectors reach the "superhuman crossover" required to replace human experts, we introduce the Human-AIGI benchmark, featuring a psychophysically curated human-imperceptible subset. Across 14 benchmarks, MIRROR consistently outperforms prior methods, achieving gains of 2.1% on six standard benchmarks and 8.1% on seven in-the-wild benchmarks. On Human-AIGI, MIRROR reaches 89.6% accuracy across 27 generators, surpassing both lay users and visual experts, and further approaching the human perceptual limit as pretrained backbones scale. The code is publicly available at: https://github.com/349793927/MIRROR
Abstract:Chain-of-Thought (CoT) reasoning enhances the decision-making capabilities of vision-language-action models in autonomous driving, but its autoregressive nature introduces significant inference latency, making it impractical for real-time applications. To address this, we introduce FastDriveCoT, a novel parallel decoding method that accelerates template-structured CoT. Our approach decomposes the reasoning process into a dependency graph of distinct sub-tasks, such as identifying critical objects and summarizing traffic rules, some of which can be generated in parallel. By generating multiple independent reasoning steps concurrently within a single forward pass, we significantly reduce the number of sequential computations. Experiments demonstrate a 3-4$\times$ speedup in CoT generation and a substantial reduction in end-to-end latency across various model architectures, all while preserving the original downstream task improvements brought by incorporating CoT reasoning.
Abstract:Cross-domain fake news detection (CD-FND) transfers knowledge from a source domain to a target domain and is crucial for real-world fake news mitigation. This task becomes particularly important yet more challenging when the target domain is previously unseen (e.g., the COVID-19 outbreak or the Russia-Ukraine war). However, existing CD-FND methods overlook such scenarios and consequently suffer from the following two key limitations: (1) insufficient modeling of high-level semantics in news and user engagements; and (2) scarcity of labeled data in unseen domains. Targeting these limitations, we find that large language models (LLMs) offer strong potential for CD-FND on unseen domains, yet their effective use remains non-trivial. Nevertheless, two key challenges arise: (1) how to capture high-level semantics from both news content and user engagements using LLMs; and (2) how to make LLM-generated features more reliable and transferable for CD-FND on unseen domains. To tackle these challenges, we propose DAUD, a novel LLM-Based Domain-Aware framework for fake news detection on Unseen Domains. DAUD employs LLMs to extract high-level semantics from news content. It models users' single- and cross-domain engagements to generate domain-aware behavioral representations. In addition, DAUD captures the relations between original data-driven features and LLM-derived features of news, users, and user engagements. This allows it to extract more reliable domain-shared representations that improve knowledge transfer to unseen domains. Extensive experiments on real-world datasets demonstrate that DAUD outperforms state-of-the-art baselines in both general and unseen-domain CD-FND settings.
Abstract:Japanese finance combines agglutinative, head-final linguistic structure, mixed writing systems, and high-context communication norms that rely on indirect expression and implicit commitment, posing a substantial challenge for LLMs. We introduce Ebisu, a benchmark for native Japanese financial language understanding, comprising two linguistically and culturally grounded, expert-annotated tasks: JF-ICR, which evaluates implicit commitment and refusal recognition in investor-facing Q&A, and JF-TE, which assesses hierarchical extraction and ranking of nested financial terminology from professional disclosures. We evaluate a diverse set of open-source and proprietary LLMs spanning general-purpose, Japanese-adapted, and financial models. Results show that even state-of-the-art systems struggle on both tasks. While increased model scale yields limited improvements, language- and domain-specific adaptation does not reliably improve performance, leaving substantial gaps unresolved. Ebisu provides a focused benchmark for advancing linguistically and culturally grounded financial NLP. All datasets and evaluation scripts are publicly released.
Abstract:Graph unlearning (GU), which removes nodes, edges, or features from trained graph neural networks (GNNs), is crucial in Web applications where graph data may contain sensitive, mislabeled, or malicious information. However, existing GU methods lack a clear understanding of the key factors that determine unlearning effectiveness, leading to three fundamental limitations: (1) impractical and inaccurate GU difficulty assessment due to test-access requirements and invalid assumptions, (2) ineffectiveness on hard-to-unlearn tasks, and (3) misaligned evaluation protocols that overemphasize easy tasks and fail to capture true forgetting capability. To address these issues, we establish GNN memorization as a new perspective for understanding graph unlearning and propose MGU, a Memorization-guided Graph Unlearning framework. MGU achieves three key advances: it provides accurate and practical difficulty assessment across different GU tasks, develops an adaptive strategy that dynamically adjusts unlearning objectives based on difficulty levels, and establishes a comprehensive evaluation protocol that aligns with practical requirements. Extensive experiments on ten real-world graphs demonstrate that MGU consistently outperforms state-of-the-art baselines in forgetting quality, computational efficiency, and utility preservation.
Abstract:Recent advances in generative modeling can create remarkably realistic synthetic videos, making it increasingly difficult for humans to distinguish them from real ones and necessitating reliable detection methods. However, two key limitations hinder the development of this field. \textbf{From the dataset perspective}, existing datasets are often limited in scale and constructed using outdated or narrowly scoped generative models, making it difficult to capture the diversity and rapid evolution of modern generative techniques. Moreover, the dataset construction process frequently prioritizes quantity over quality, neglecting essential aspects such as semantic diversity, scenario coverage, and technological representativeness. \textbf{From the benchmark perspective}, current benchmarks largely remain at the stage of dataset creation, leaving many fundamental issues and in-depth analysis yet to be systematically explored. Addressing this gap, we propose AIGVDBench, a benchmark designed to be comprehensive and representative, covering \textbf{31} state-of-the-art generation models and over \textbf{440,000} videos. By executing more than \textbf{1,500} evaluations on \textbf{33} existing detectors belonging to four distinct categories. This work presents \textbf{8 in-depth analyses} from multiple perspectives and identifies \textbf{4 novel findings} that offer valuable insights for future research. We hope this work provides a solid foundation for advancing the field of AI-generated video detection. Our benchmark is open-sourced at https://github.com/LongMa-2025/AIGVDBench.
Abstract:Character image animation is gaining significant importance across various domains, driven by the demand for robust and flexible multi-subject rendering. While existing methods excel in single-person animation, they struggle to handle arbitrary subject counts, diverse character types, and spatial misalignment between the reference image and the driving poses. We attribute these limitations to an overly rigid spatial binding that forces strict pixel-wise alignment between the pose and reference, and an inability to consistently rebind motion to intended subjects. To address these challenges, we propose CoDance, a novel Unbind-Rebind framework that enables the animation of arbitrary subject counts, types, and spatial configurations conditioned on a single, potentially misaligned pose sequence. Specifically, the Unbind module employs a novel pose shift encoder to break the rigid spatial binding between the pose and the reference by introducing stochastic perturbations to both poses and their latent features, thereby compelling the model to learn a location-agnostic motion representation. To ensure precise control and subject association, we then devise a Rebind module, leveraging semantic guidance from text prompts and spatial guidance from subject masks to direct the learned motion to intended characters. Furthermore, to facilitate comprehensive evaluation, we introduce a new multi-subject CoDanceBench. Extensive experiments on CoDanceBench and existing datasets show that CoDance achieves SOTA performance, exhibiting remarkable generalization across diverse subjects and spatial layouts. The code and weights will be open-sourced.