Abstract:Early detection of eye diseases like glaucoma, macular degeneration, and diabetic retinopathy is crucial for preventing vision loss. While artificial intelligence (AI) foundation models hold significant promise for addressing these challenges, existing ophthalmic foundation models primarily focus on a single modality, whereas diagnosing eye diseases requires multiple modalities. A critical yet often overlooked aspect is harnessing the multi-view information across various modalities for the same patient. Additionally, due to the long-tail nature of ophthalmic diseases, standard fully supervised or unsupervised learning approaches often struggle. Therefore, it is essential to integrate clinical text to capture a broader spectrum of diseases. We propose EyeCLIP, a visual-language foundation model developed using over 2.77 million multi-modal ophthalmology images with partial text data. To fully leverage the large multi-modal unlabeled and labeled data, we introduced a pretraining strategy that combines self-supervised reconstructions, multi-modal image contrastive learning, and image-text contrastive learning to learn a shared representation of multiple modalities. Through evaluation using 14 benchmark datasets, EyeCLIP can be transferred to a wide range of downstream tasks involving ocular and systemic diseases, achieving state-of-the-art performance in disease classification, visual question answering, and cross-modal retrieval. EyeCLIP represents a significant advancement over previous methods, especially showcasing few-shot, even zero-shot capabilities in real-world long-tail scenarios.
Abstract:Fine-grained sentiment analysis involves extracting and organizing sentiment elements from textual data. However, existing approaches often overlook issues of category semantic inclusion and overlap, as well as inherent structural patterns within the target sequence. This study introduces a generative sentiment analysis model. To address the challenges related to category semantic inclusion and overlap, a latent category distribution variable is introduced. By reconstructing the input of a variational autoencoder, the model learns the intensity of the relationship between categories and text, thereby improving sequence generation. Additionally, a trie data structure and constrained decoding strategy are utilized to exploit structural patterns, which in turn reduces the search space and regularizes the generation process. Experimental results on the Restaurant-ACOS and Laptop-ACOS datasets demonstrate a significant performance improvement compared to baseline models. Ablation experiments further confirm the effectiveness of latent category distribution and constrained decoding strategy.
Abstract:Current hair transfer methods struggle to handle diverse and intricate hairstyles, thus limiting their applicability in real-world scenarios. In this paper, we propose a novel diffusion-based hair transfer framework, named \textit{Stable-Hair}, which robustly transfers a wide range of real-world hairstyles onto user-provided faces for virtual hair try-on. To achieve this goal, our Stable-Hair framework is designed as a two-stage pipeline. In the first stage, we train a Bald Converter alongside stable diffusion to remove hair from the user-provided face images, resulting in bald images. In the second stage, we specifically designed three modules: a Hair Extractor, a Latent IdentityNet, and Hair Cross-Attention Layers to transfer the target hairstyle with highly detailed and high-fidelity to the bald image. Specifically, the Hair Extractor is trained to encode reference images with the desired hairstyles. To preserve the consistency of identity content and background between the source images and the transfer results, we employ a Latent IdentityNet to encode the source images. With the assistance of our Hair Cross-Attention Layers in the U-Net, we can accurately and precisely transfer the highly detailed and high-fidelity hairstyle to the bald image. Extensive experiments have demonstrated that our approach delivers state-of-the-art (SOTA) results among existing hair transfer methods. Project page: \textcolor{red}{\url{https://xiaojiu-z.github.io/Stable-Hair.github.io/}}
Abstract:Open-source EDA tools are rapidly advancing, fostering collaboration, innovation, and knowledge sharing within the EDA community. However, the growing complexity of these tools, characterized by numerous design parameters and heuristics, poses a significant barrier to their widespread adoption. This complexity is particularly pronounced in integrated circuit (IC) backend designs, which place substantial demands on engineers' expertise in EDA tools. To tackle this challenge, we introduce IICPilot, an intelligent IC backend design system based on LLM technology. IICPilot automates various backend design procedures, including script generation, EDA tool invocation, design space exploration of EDA parameters, container-based computing resource allocation, and exception management. By automating these tasks, IICPilot significantly lowers the barrier to entry for open-source EDA tools. Specifically, IICPilot utilizes LangChain's multi-agent framework to efficiently handle distinct design tasks, enabling flexible enhancements independently. Moreover, IICPilot separates the backend design workflow from specific open-source EDA tools through a unified EDA calling interface. This approach allows seamless integration with different open-source EDA tools like OpenROAD and iEDA, streamlining the backend design and optimization across the EDA tools.
Abstract:With the rapid development of depth sensor, more and more RGB-D videos could be obtained. Identifying the foreground in RGB-D videos is a fundamental and important task. However, the existing salient object detection (SOD) works only focus on either static RGB-D images or RGB videos, ignoring the collaborating of RGB-D and video information. In this paper, we first collect a new annotated RGB-D video SOD (ViDSOD-100) dataset, which contains 100 videos within a total of 9,362 frames, acquired from diverse natural scenes. All the frames in each video are manually annotated to a high-quality saliency annotation. Moreover, we propose a new baseline model, named attentive triple-fusion network (ATF-Net), for RGB-D video salient object detection. Our method aggregates the appearance information from an input RGB image, spatio-temporal information from an estimated motion map, and the geometry information from the depth map by devising three modality-specific branches and a multi-modality integration branch. The modality-specific branches extract the representation of different inputs, while the multi-modality integration branch combines the multi-level modality-specific features by introducing the encoder feature aggregation (MEA) modules and decoder feature aggregation (MDA) modules. The experimental findings conducted on both our newly introduced ViDSOD-100 dataset and the well-established DAVSOD dataset highlight the superior performance of the proposed ATF-Net. This performance enhancement is demonstrated both quantitatively and qualitatively, surpassing the capabilities of current state-of-the-art techniques across various domains, including RGB-D saliency detection, video saliency detection, and video object segmentation. Our data and our code are available at github.com/jhl-Det/RGBD_Video_SOD.
Abstract:Video recognition remains an open challenge, requiring the identification of diverse content categories within videos. Mainstream approaches often perform flat classification, overlooking the intrinsic hierarchical structure relating categories. To address this, we formalize the novel task of hierarchical video recognition, and propose a video-language learning framework tailored for hierarchical recognition. Specifically, our framework encodes dependencies between hierarchical category levels, and applies a top-down constraint to filter recognition predictions. We further construct a new fine-grained dataset based on medical assessments for rehabilitation of stroke patients, serving as a challenging benchmark for hierarchical recognition. Through extensive experiments, we demonstrate the efficacy of our approach for hierarchical recognition, significantly outperforming conventional methods, especially for fine-grained subcategories. The proposed framework paves the way for hierarchical modeling in video understanding tasks, moving beyond flat categorization.
Abstract:Human avatar has become a novel type of 3D asset with various applications. Ideally, a human avatar should be fully customizable to accommodate different settings and environments. In this work, we introduce NECA, an approach capable of learning versatile human representation from monocular or sparse-view videos, enabling granular customization across aspects such as pose, shadow, shape, lighting and texture. The core of our approach is to represent humans in complementary dual spaces and predict disentangled neural fields of geometry, albedo, shadow, as well as an external lighting, from which we are able to derive realistic rendering with high-frequency details via volumetric rendering. Extensive experiments demonstrate the advantage of our method over the state-of-the-art methods in photorealistic rendering, as well as various editing tasks such as novel pose synthesis and relighting. The code is available at https://github.com/iSEE-Laboratory/NECA.
Abstract:Current makeup transfer methods are limited to simple makeup styles, making them difficult to apply in real-world scenarios. In this paper, we introduce Stable-Makeup, a novel diffusion-based makeup transfer method capable of robustly transferring a wide range of real-world makeup, onto user-provided faces. Stable-Makeup is based on a pre-trained diffusion model and utilizes a Detail-Preserving (D-P) makeup encoder to encode makeup details. It also employs content and structural control modules to preserve the content and structural information of the source image. With the aid of our newly added makeup cross-attention layers in U-Net, we can accurately transfer the detailed makeup to the corresponding position in the source image. After content-structure decoupling training, Stable-Makeup can maintain content and the facial structure of the source image. Moreover, our method has demonstrated strong robustness and generalizability, making it applicable to varioustasks such as cross-domain makeup transfer, makeup-guided text-to-image generation and so on. Extensive experiments have demonstrated that our approach delivers state-of-the-art (SOTA) results among existing makeup transfer methods and exhibits a highly promising with broad potential applications in various related fields.
Abstract:We tackle the problem of single-image Human Mesh Recovery (HMR). Previous approaches are mostly based on a single crop. In this paper, we shift the single-crop HMR to a novel multiple-crop HMR paradigm. Cropping a human from image multiple times by shifting and scaling the original bounding box is feasible in practice, easy to implement, and incurs neglectable cost, but immediately enriches available visual details. With multiple crops as input, we manage to leverage the relation among these crops to extract discriminative features and reduce camera ambiguity. Specifically, (1) we incorporate a contrastive learning scheme to enhance the similarity between features extracted from crops of the same human. (2) We also propose a crop-aware fusion scheme to fuse the features of multiple crops for regressing the target mesh. (3) We compute local cameras for all the input crops and build a camera-consistency loss between the local cameras, which reward us with less ambiguous cameras. Based on the above innovations, our proposed method outperforms previous approaches as demonstrated by the extensive experiments.
Abstract:We propose a novel optimization-based human mesh recovery method from a single image. Given a test exemplar, previous approaches optimize the pre-trained regression network to minimize the 2D re-projection loss, which however suffer from over-/under-fitting problems. This is because the ``exemplar optimization'' at testing time has too weak relation to the pre-training process, and the exemplar optimization loss function is different from the training loss function. (1) We incorporate exemplar optimization into the training stage. During training, our method first executes exemplar optimization and subsequently proceeds with training-time optimization. The exemplar optimization may run into a wrong direction, while the subsequent training optimization serves to correct the deviation. Involved in training, the exemplar optimization learns to adapt its behavior to training data, thereby acquires generalibility to test exemplars. (2) We devise a dual-network architecture to convey the novel training paradigm, which is composed of a main regression network and an auxiliary network, in which we can formulate the exemplar optimization loss function in the same form as the training loss function. This further enhances the compatibility between the exemplar and training optimizations. Experiments demonstrate that our exemplar optimization after the novel training scheme significantly outperforms state-of-the-art approaches.