Abstract:The Airbnb search system grapples with many unique challenges as it continues to evolve. We oversee a marketplace that is nuanced by geography, diversity of homes, and guests with a variety of preferences. Crafting an efficient search system that can accommodate diverse guest needs, while showcasing relevant homes lies at the heart of Airbnb's success. Airbnb search has many challenges that parallel other recommendation and search systems but it has a unique information retrieval problem, upstream of ranking, called location retrieval. It requires defining a topological map area that is relevant to the searched query for homes listing retrieval. The purpose of this paper is to demonstrate the methodology, challenges, and impact of building a machine learning based location retrieval product from the ground up. Despite the lack of suitable, prevalent machine learning based approaches, we tackle cold start, generalization, differentiation and algorithmic bias. We detail the efficacy of heuristics, statistics, machine learning, and reinforcement learning approaches to solve these challenges, particularly for systems that are often unexplored by current literature.
Abstract:In online marketplaces, search ranking's objective is not only to purchase or conversion (primary objective), but to also the purchase outcomes(secondary objectives), e.g. order cancellation(or return), review rating, customer service inquiries, platform long term growth. Multi-objective learning to rank has been widely studied to balance primary and secondary objectives. But traditional approaches in industry face some challenges including expensive parameter tuning leads to sub-optimal solution, suffering from imbalanced data sparsity issue, and being not compatible with ad-hoc objective. In this paper, we propose a distillation-based ranking solution for multi-objective ranking, which optimizes the end-to-end ranking system at Airbnb across multiple ranking models on different objectives along with various considerations to optimize training and serving efficiency to meet industry standards. We found it performs much better than traditional approaches, it doesn't only significantly increases primary objective by a large margin but also meet secondary objectives constraints and improve model stability. We also demonstrated the proposed system could be further simplified by model self-distillation. Besides this, we did additional simulations to show that this approach could also help us efficiently inject ad-hoc non-differentiable business objective into the ranking system while enabling us to balance our optimization objectives.
Abstract:As a two-sided marketplace, Airbnb brings together hosts who own listings for rent with prospective guests from around the globe. Results from a guest's search for listings are displayed primarily through two interfaces: (1) as a list of rectangular cards that contain on them the listing image, price, rating, and other details, referred to as list-results (2) as oval pins on a map showing the listing price, called map-results. Both these interfaces, since their inception, have used the same ranking algorithm that orders listings by their booking probabilities and selects the top listings for display. But some of the basic assumptions underlying ranking, built for a world where search results are presented as lists, simply break down for maps. This paper describes how we rebuilt ranking for maps by revising the mathematical foundations of how users interact with search results. Our iterative and experiment-driven approach led us through a path full of twists and turns, ending in a unified theory for the two interfaces. Our journey shows how assumptions taken for granted when designing machine learning algorithms may not apply equally across all user interfaces, and how they can be adapted. The net impact was one of the largest improvements in user experience for Airbnb which we discuss as a series of experimental validations.
Abstract:At Airbnb, an online marketplace for stays and experiences, guests often spend weeks exploring and comparing multiple items before making a final reservation request. Each reservation request may then potentially be rejected or cancelled by the host prior to check-in. The long and exploratory nature of the search journey, as well as the need to balance both guest and host preferences, present unique challenges for Airbnb search ranking. In this paper, we present Journey Ranker, a new multi-task deep learning model architecture that addresses these challenges. Journey Ranker leverages intermediate guest actions as milestones, both positive and negative, to better progress the guest towards a successful booking. It also uses contextual information such as guest state and search query to balance guest and host preferences. Its modular and extensible design, consisting of four modules with clear separation of concerns, allows for easy application to use cases beyond the Airbnb search ranking context. We conducted offline and online testing of the Journey Ranker and successfully deployed it in production to four different Airbnb products with significant business metrics improvements.