Abstract:It is significantly challenging to recognize daily human actions in homes due to the diversity and dynamic changes in unconstrained home environments. It spurs the need to continually adapt to various users and scenes. Fine-tuning current video understanding models on newly encountered domains often leads to catastrophic forgetting, where the models lose their ability to perform well on previously learned scenarios. To address this issue, we formalize the problem of Video Domain Incremental Learning (VDIL), which enables models to learn continually from different domains while maintaining a fixed set of action classes. Existing continual learning research primarily focuses on class-incremental learning, while the domain incremental learning has been largely overlooked in video understanding. In this work, we introduce a novel benchmark of domain incremental human action recognition for unconstrained home environments. We design three domain split types (user, scene, hybrid) to systematically assess the challenges posed by domain shifts in real-world home settings. Furthermore, we propose a baseline learning strategy based on replay and reservoir sampling techniques without domain labels to handle scenarios with limited memory and task agnosticism. Extensive experimental results demonstrate that our simple sampling and replay strategy outperforms most existing continual learning methods across the three proposed benchmarks.
Abstract:In recent years, aerial object detection has been increasingly pivotal in various earth observation applications. However, current algorithms are limited to detecting a set of pre-defined object categories, demanding sufficient annotated training samples, and fail to detect novel object categories. In this paper, we put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD), which can detect objects beyond training categories without costly collecting new labeled data. We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario, where objects often exhibit weak appearance features and arbitrary orientations. Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects. Additionally, the RemoteCLIP model is adopted as an omniscient teacher, which provides rich knowledge to enhance classification capabilities for novel categories. A dynamic label queue is devised to maintain high-quality pseudo-labels during training. By doing so, the proposed CastDet boosts not only novel object proposals but also classification. Furthermore, we extend our approach from horizontal OVAD to oriented OVAD with tailored algorithm designs to effectively manage bounding box representation and pseudo-label generation. Extensive experiments for both tasks on multiple existing aerial object detection datasets demonstrate the effectiveness of our approach. The code is available at https://github.com/lizzy8587/CastDet.
Abstract:The Airbnb search system grapples with many unique challenges as it continues to evolve. We oversee a marketplace that is nuanced by geography, diversity of homes, and guests with a variety of preferences. Crafting an efficient search system that can accommodate diverse guest needs, while showcasing relevant homes lies at the heart of Airbnb's success. Airbnb search has many challenges that parallel other recommendation and search systems but it has a unique information retrieval problem, upstream of ranking, called location retrieval. It requires defining a topological map area that is relevant to the searched query for homes listing retrieval. The purpose of this paper is to demonstrate the methodology, challenges, and impact of building a machine learning based location retrieval product from the ground up. Despite the lack of suitable, prevalent machine learning based approaches, we tackle cold start, generalization, differentiation and algorithmic bias. We detail the efficacy of heuristics, statistics, machine learning, and reinforcement learning approaches to solve these challenges, particularly for systems that are often unexplored by current literature.
Abstract:Object detection in aerial images is a pivotal task for various earth observation applications, whereas current algorithms learn to detect only a pre-defined set of object categories demanding sufficient bounding-box annotated training samples and fail to detect novel object categories. In this paper, we consider open-vocabulary object detection (OVD) in aerial images that enables the characterization of new objects beyond training categories on the earth surface without annotating training images for these new categories. The performance of OVD depends on the quality of class-agnostic region proposals and pseudo-labels that can generalize well to novel object categories. To simultaneously generate high-quality proposals and pseudo-labels, we propose CastDet, a CLIP-activated student-teacher open-vocabulary object Detection framework. Our end-to-end framework within the student-teacher mechanism employs the CLIP model as an extra omniscient teacher of rich knowledge into the student-teacher self-learning process. By doing so, our approach boosts novel object proposals and classification. Furthermore, we design a dynamic label queue technique to maintain high-quality pseudo labels during batch training and mitigate label imbalance. We conduct extensive experiments on multiple existing aerial object detection datasets, which are set up for the OVD task. Experimental results demonstrate our CastDet achieving superior open-vocabulary detection performance, e.g., reaching 40.0 HM (Harmonic Mean), which outperforms previous methods Detic/ViLD by 26.9/21.1 on the VisDroneZSD dataset.
Abstract:Deep learning methods exhibit outstanding performance in synthetic aperture radar (SAR) image interpretation tasks. However, these are black box models that limit the comprehension of their predictions. Therefore, to meet this challenge, we have utilized explainable artificial intelligence (XAI) methods for the SAR image classification task. Specifically, we trained state-of-the-art convolutional neural networks for each polarization format on OpenSARUrban dataset and then investigate eight explanation methods to analyze the predictions of the CNN classifiers of SAR images. These XAI methods are also evaluated qualitatively and quantitatively which shows that Occlusion achieves the most reliable interpretation performance in terms of Max-Sensitivity but with a low-resolution explanation heatmap. The explanation results provide some insights into the internal mechanism of black-box decisions for SAR image classification.
Abstract:Many search systems work with large amounts of natural language data, e.g., search queries, user profiles, and documents. Building a successful search system requires a thorough understanding of textual data semantics, where deep learning based natural language processing techniques (deep NLP) can be of great help. In this paper, we introduce a comprehensive study for applying deep NLP techniques to five representative tasks in search systems: query intent prediction (classification), query tagging (sequential tagging), document ranking (ranking), query auto completion (language modeling), and query suggestion (sequence to sequence). We also introduce BERT pre-training as a sixth task that can be applied to many of the other tasks. Through the model design and experiments of the six tasks, readers can find answers to four important questions: (1). When is deep NLP helpful/not helpful in search systems? (2). How to address latency challenges? (3). How to ensure model robustness? This work builds on existing efforts of LinkedIn search, and is tested at scale on LinkedIn's commercial search engines. We believe our experiences can provide useful insights for the industry and research communities.
Abstract:Many search systems work with large amounts of natural language data, e.g., search queries, user profiles and documents, where deep learning based natural language processing techniques (deep NLP) can be of great help. In this paper, we introduce a comprehensive study of applying deep NLP techniques to five representative tasks in search engines. Through the model design and experiments of the five tasks, readers can find answers to three important questions: (1) When is deep NLP helpful/not helpful in search systems? (2) How to address latency challenges? (3) How to ensure model robustness? This work builds on existing efforts of LinkedIn search, and is tested at scale on a commercial search engine. We believe our experiences can provide useful insights for the industry and research communities.
Abstract:Deep neural networks (DNNs) have demonstrated excellent performance on various tasks, however they are under the risk of adversarial examples that can be easily generated when the target model is accessible to an attacker (white-box setting). As plenty of machine learning models have been deployed via online services that only provide query outputs from inaccessible models (e.g. Google Cloud Vision API2), black-box adversarial attacks (inaccessible target model) are of critical security concerns in practice rather than white-box ones. However, existing query-based black-box adversarial attacks often require excessive model queries to maintain a high attack success rate. Therefore, in order to improve query efficiency, we explore the distribution of adversarial examples around benign inputs with the help of image structure information characterized by a Neural Process, and propose a Neural Process based black-box adversarial attack (NP-Attack) in this paper. Extensive experiments show that NP-Attack could greatly decrease the query counts under the black-box setting.
Abstract:Understanding a user's query intent behind a search is critical for modern search engine success. Accurate query intent prediction allows the search engine to better serve the user's need by rendering results from more relevant categories. This paper aims to provide a comprehensive learning framework for modeling query intent under different stages of a search. We focus on the design for 1) predicting users' intents as they type in queries on-the-fly in typeahead search using character-level models; and 2) accurate word-level intent prediction models for complete queries. Various deep learning components for query text understanding are experimented. Offline evaluation and online A/B test experiments show that the proposed methods are effective in understanding query intent and efficient to scale for online search systems.
Abstract:Query Auto Completion (QAC), as the starting point of information retrieval tasks, is critical to user experience. Generally it has two steps: generating completed query candidates according to query prefixes, and ranking them based on extracted features. Three major challenges are observed for a query auto completion system: (1) QAC has a strict online latency requirement. For each keystroke, results must be returned within tens of milliseconds, which poses a significant challenge in designing sophisticated language models for it. (2) For unseen queries, generated candidates are of poor quality as contextual information is not fully utilized. (3) Traditional QAC systems heavily rely on handcrafted features such as the query candidate frequency in search logs, lacking sufficient semantic understanding of the candidate. In this paper, we propose an efficient neural QAC system with effective context modeling to overcome these challenges. On the candidate generation side, this system uses as much information as possible in unseen prefixes to generate relevant candidates, increasing the recall by a large margin. On the candidate ranking side, an unnormalized language model is proposed, which effectively captures deep semantics of queries. This approach presents better ranking performance over state-of-the-art neural ranking methods and reduces $\sim$95\% latency compared to neural language modeling methods. The empirical results on public datasets show that our model achieves a good balance between accuracy and efficiency. This system is served in LinkedIn job search with significant product impact observed.