Abstract:sRGB images are now the predominant choice for pre-training visual models in computer vision research, owing to their ease of acquisition and efficient storage. Meanwhile, the advantage of RAW images lies in their rich physical information under variable real-world challenging lighting conditions. For computer vision tasks directly based on camera RAW data, most existing studies adopt methods of integrating image signal processor (ISP) with backend networks, yet often overlook the interaction capabilities between the ISP stages and subsequent networks. Drawing inspiration from ongoing adapter research in NLP and CV areas, we introduce RAW-Adapter, a novel approach aimed at adapting sRGB pre-trained models to camera RAW data. RAW-Adapter comprises input-level adapters that employ learnable ISP stages to adjust RAW inputs, as well as model-level adapters to build connections between ISP stages and subsequent high-level networks. Additionally, RAW-Adapter is a general framework that could be used in various computer vision frameworks. Abundant experiments under different lighting conditions have shown our algorithm's state-of-the-art (SOTA) performance, demonstrating its effectiveness and efficiency across a range of real-world and synthetic datasets.
Abstract:The standard Neural Radiance Fields (NeRF) paradigm employs a viewer-centered methodology, entangling the aspects of illumination and material reflectance into emission solely from 3D points. This simplified rendering approach presents challenges in accurately modeling images captured under adverse lighting conditions, such as low light or over-exposure. Motivated by the ancient Greek emission theory that posits visual perception as a result of rays emanating from the eyes, we slightly refine the conventional NeRF framework to train NeRF under challenging light conditions and generate normal-light condition novel views unsupervised. We introduce the concept of a "Concealing Field," which assigns transmittance values to the surrounding air to account for illumination effects. In dark scenarios, we assume that object emissions maintain a standard lighting level but are attenuated as they traverse the air during the rendering process. Concealing Field thus compel NeRF to learn reasonable density and colour estimations for objects even in dimly lit situations. Similarly, the Concealing Field can mitigate over-exposed emissions during the rendering stage. Furthermore, we present a comprehensive multi-view dataset captured under challenging illumination conditions for evaluation. Our code and dataset available at https://github.com/cuiziteng/Aleth-NeRF
Abstract:Common capture low-light scenes are challenging for most computer vision techniques, including Neural Radiance Fields (NeRF). Vanilla NeRF is viewer-centred that simplifies the rendering process only as light emission from 3D locations in the viewing direction, thus failing to model the low-illumination induced darkness. Inspired by emission theory of ancient Greek that visual perception is accomplished by rays casting from eyes, we make slight modifications on vanilla NeRF to train on multiple views of low-light scene, we can thus render out the well-lit scene in an unsupervised manner. We introduce a surrogate concept, Concealing Fields, that reduce the transport of light during the volume rendering stage. Specifically, our proposed method, Aleth-NeRF, directly learns from the dark image to understand volumetric object representation and concealing field under priors. By simply eliminating Concealing Fields, we can render a single or multi-view well-lit image(s) and gain superior performance over other 2D low light enhancement methods. Additionally, we collect the first paired LOw-light and normal-light Multi-view (LOM) datasets for future research.
Abstract:The long-standing theory that a colour-naming system evolves under the dual pressure of efficient communication and perceptual mechanism is supported by more and more linguistic studies including the analysis of four decades' diachronic data from the Nafaanra language. This inspires us to explore whether artificial intelligence could evolve and discover a similar colour-naming system via optimising the communication efficiency represented by high-level recognition performance. Here, we propose a novel colour quantisation transformer, CQFormer, that quantises colour space while maintaining the accuracy of machine recognition on the quantised images. Given an RGB image, Annotation Branch maps it into an index map before generating the quantised image with a colour palette, meanwhile the Palette Branch utilises a key-point detection way to find proper colours in palette among whole colour space. By interacting with colour annotation, CQFormer is able to balance both the machine vision accuracy and colour perceptual structure such as distinct and stable colour distribution for discovered colour system. Very interestingly, we even observe the consistent evolution pattern between our artificial colour system and basic colour terms across human languages. Besides, our colour quantisation method also offers an efficient quantisation method that effectively compresses the image storage while maintaining a high performance in high-level recognition tasks such as classification and detection. Extensive experiments demonstrate the superior performance of our method with extremely low bit-rate colours. We will release the source code soon.
Abstract:Fairness is a fundamental requirement for trustworthy and human-centered Artificial Intelligence (AI) system. However, deep neural networks (DNNs) tend to make unfair predictions when the training data are collected from different sub-populations with different attributes (i.e. color, sex, age), leading to biased DNN predictions. We notice that such a troubling phenomenon is often caused by data itself, which means that bias information is encoded to the DNN along with the useful information (i.e. class information, semantic information). Therefore, we propose to use sketching to handle this phenomenon. Without losing the utility of data, we explore the image-to-sketching methods that can maintain useful semantic information for the target classification while filtering out the useless bias information. In addition, we design a fair loss to further improve the model fairness. We evaluate our method through extensive experiments on both general scene dataset and medical scene dataset. Our results show that the desired image-to-sketching method improves model fairness and achieves satisfactory results among state-of-the-art.
Abstract:Image restoration algorithms such as super resolution (SR) are indispensable pre-processing modules for object detection in low quality images. Most of these algorithms assume the degradation is fixed and known a priori. However, in practical, either the real degradation or optimal up-sampling ratio rate is unknown or differs from assumption, leading to a deteriorating performance for both the pre-processing module and the consequent high-level task such as object detection. Here, we propose a novel self-supervised framework to detect objects in degraded low resolution images. We utilizes the downsampling degradation as a kind of transformation for self-supervised signals to explore the equivariant representation against various resolutions and other degradation conditions. The Auto Encoding Resolution in Self-supervision (AERIS) framework could further take the advantage of advanced SR architectures with an arbitrary resolution restoring decoder to reconstruct the original correspondence from the degraded input image. Both the representation learning and object detection are optimized jointly in an end-to-end training fashion. The generic AERIS framework could be implemented on various mainstream object detection architectures with different backbones. The extensive experiments show that our methods has achieved superior performance compared with existing methods when facing variant degradation situations. Code would be released at https://github.com/cuiziteng/ECCV_AERIS.
Abstract:Challenging illumination conditions (low light, underexposure and overexposure) in the real world not only cast an unpleasant visual appearance but also taint the computer vision tasks. Existing light adaptive methods often deal with each condition individually. What is more, most of them often operate on a RAW image or over-simplify the camera image signal processing (ISP) pipeline. By decomposing the light transformation pipeline into local and global ISP components, we propose a lightweight fast Illumination Adaptive Transformer (IAT) which comprises two transformer-style branches: local estimation branch and global ISP branch. While the local branch estimates the pixel-wise local components relevant to illumination, the global branch defines learnable quires that attend the whole image to decode the parameters. Our IAT could also conduct both object detection and semantic segmentation under various light conditions. We have extensively evaluated IAT on multiple real-world datasets on 2 low-level tasks and 3 high-level tasks. With only 90k parameters and 0.004s processing speed (excluding high-level module), our IAT has consistently achieved superior performance over SOTA. Code is available at https://github.com/cuiziteng/IlluminationAdaptive-Transformer.
Abstract:Dark environment becomes a challenge for computer vision algorithms owing to insufficient photons and undesirable noise. To enhance object detection in a dark environment, we propose a novel multitask auto encoding transformation (MAET) model which is able to explore the intrinsic pattern behind illumination translation. In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation considering the physical noise model and image signal processing (ISP). Based on this representation, we achieve the object detection task by decoding the bounding box coordinates and classes. To avoid the over-entanglement of two tasks, our MAET disentangles the object and degrading features by imposing an orthogonal tangent regularity. This forms a parametric manifold along which multitask predictions can be geometrically formulated by maximizing the orthogonality between the tangents along the outputs of respective tasks. Our framework can be implemented based on the mainstream object detection architecture and directly trained end-to-end using normal target detection datasets, such as VOC and COCO. We have achieved the state-of-the-art performance using synthetic and real-world datasets. Code is available at https://github.com/cuiziteng/MAET.
Abstract:Deep learning methods exhibit outstanding performance in synthetic aperture radar (SAR) image interpretation tasks. However, these are black box models that limit the comprehension of their predictions. Therefore, to meet this challenge, we have utilized explainable artificial intelligence (XAI) methods for the SAR image classification task. Specifically, we trained state-of-the-art convolutional neural networks for each polarization format on OpenSARUrban dataset and then investigate eight explanation methods to analyze the predictions of the CNN classifiers of SAR images. These XAI methods are also evaluated qualitatively and quantitatively which shows that Occlusion achieves the most reliable interpretation performance in terms of Max-Sensitivity but with a low-resolution explanation heatmap. The explanation results provide some insights into the internal mechanism of black-box decisions for SAR image classification.
Abstract:Convolution neural networks (CNNs) based methods have dominated the low-light image enhancement tasks due to their outstanding performance. However, the convolution operation is based on a local sliding window mechanism, which is difficult to construct the long-range dependencies of the feature maps. Meanwhile, the self-attention based global relationship aggregation methods have been widely used in computer vision, but these methods are difficult to handle high-resolution images because of the high computational complexity. To solve this problem, this paper proposes a Linear Array Self-attention (LASA) mechanism, which uses only two 2-D feature encodings to construct 3-D global weights and then refines feature maps generated by convolution layers. Based on LASA, Linear Array Network (LAN) is proposed, which is superior to the existing state-of-the-art (SOTA) methods in both RGB and RAW based low-light enhancement tasks with a smaller amount of parameters. The code is released in \url{https://github.com/cuiziteng/LASA_enhancement}.