Abstract:While 3D Gaussian Splatting (3DGS) has demonstrated remarkable performance in novel view synthesis and real-time rendering, the high memory consumption due to the use of millions of Gaussians limits its practicality. To mitigate this issue, improvements have been made by pruning unnecessary Gaussians, either through a hand-crafted criterion or by using learned masks. However, these methods deterministically remove Gaussians based on a snapshot of the pruning moment, leading to sub-optimized reconstruction performance from a long-term perspective. To address this issue, we introduce MaskGaussian, which models Gaussians as probabilistic entities rather than permanently removing them, and utilize them according to their probability of existence. To achieve this, we propose a masked-rasterization technique that enables unused yet probabilistically existing Gaussians to receive gradients, allowing for dynamic assessment of their contribution to the evolving scene and adjustment of their probability of existence. Hence, the importance of Gaussians iteratively changes and the pruned Gaussians are selected diversely. Extensive experiments demonstrate the superiority of the proposed method in achieving better rendering quality with fewer Gaussians than previous pruning methods, pruning over 60% of Gaussians on average with only a 0.02 PSNR decline. Our code can be found at: https://github.com/kaikai23/MaskGaussian
Abstract:Speech Emotion Recognition (SER) plays a critical role in enhancing user experience within human-computer interaction. However, existing methods are overwhelmed by temporal domain analysis, overlooking the valuable envelope structures of the frequency domain that are equally important for robust emotion recognition. To overcome this limitation, we propose TF-Mamba, a novel multi-domain framework that captures emotional expressions in both temporal and frequency dimensions.Concretely, we propose a temporal-frequency mamba block to extract temporal- and frequency-aware emotional features, achieving an optimal balance between computational efficiency and model expressiveness. Besides, we design a Complex Metric-Distance Triplet (CMDT) loss to enable the model to capture representative emotional clues for SER. Extensive experiments on the IEMOCAP and MELD datasets show that TF-Mamba surpasses existing methods in terms of model size and latency, providing a more practical solution for future SER applications.
Abstract:Image captioning models often suffer from performance degradation when applied to novel datasets, as they are typically trained on domain-specific data. To enhance generalization in out-of-domain scenarios, retrieval-augmented approaches have garnered increasing attention. However, current methods face two key challenges: (1) image features used for retrieval are often optimized based on ground-truth (GT) captions, which represent the image from a specific perspective and are influenced by annotator biases, and (2) they underutilize the full potential of retrieved text, typically relying on raw captions or parsed objects, which fail to capture the full semantic richness of the data. In this paper, we propose Dive Into Retrieval (DIR), a method designed to enhance both the image-to-text retrieval process and the utilization of retrieved text to achieve a more comprehensive understanding of the visual content. Our approach introduces two key innovations: (1) diffusion-guided retrieval enhancement, where a pretrained diffusion model guides image feature learning by reconstructing noisy images, allowing the model to capture more comprehensive and fine-grained visual information beyond standard annotated captions; and (2) a high-quality retrieval database, which provides comprehensive semantic information to enhance caption generation, especially in out-of-domain scenarios. Extensive experiments demonstrate that DIR not only maintains competitive in-domain performance but also significantly improves out-of-domain generalization, all without increasing inference costs.
Abstract:3D human avatars, through the use of canonical radiance fields and per-frame observed warping, enable high-fidelity rendering and animating. However, existing methods, which rely on either spatial SMPL(-X) poses or temporal embeddings, respectively suffer from coarse rendering quality or limited animation flexibility. To address these challenges, we propose GAST, a framework that unifies 3D human modeling with 3DGS by hierarchically integrating both spatial and temporal information. Specifically, we design a sequential conditioning framework for the non-rigid warping of the human body, under whose guidance more accurate 3D Gaussians can be obtained in the observation space. Moreover, the explicit properties of Gaussians allow us to embed richer sequential information, encompassing both the coarse sequence of human poses and finer per-vertex motion details. These sequence conditions are further sampled across different temporal scales, in a coarse-to-fine manner, ensuring unbiased inputs for non-rigid warping. Experimental results demonstrate that our method combined with hierarchical spatio-temporal modeling surpasses concurrent baselines, delivering both high-quality rendering and flexible animating capabilities.
Abstract:The development of 3D human avatars from multi-view videos represents a significant yet challenging task in the field. Recent advancements, including 3D Gaussian Splattings (3DGS), have markedly progressed this domain. Nonetheless, existing techniques necessitate the use of high-quality sharp images, which are often impractical to obtain in real-world settings due to variations in human motion speed and intensity. In this study, we attempt to explore deriving sharp intrinsic 3D human Gaussian avatars from blurry video footage in an end-to-end manner. Our approach encompasses a 3D-aware, physics-oriented model of blur formation attributable to human movement, coupled with a 3D human motion model to clarify ambiguities found in motion-induced blurry images. This methodology facilitates the concurrent learning of avatar model parameters and the refinement of sub-frame motion parameters from a coarse initialization. We have established benchmarks for this task through a synthetic dataset derived from existing multi-view captures, alongside a real-captured dataset acquired through a 360-degree synchronous hybrid-exposure camera system. Comprehensive evaluations demonstrate that our model surpasses existing baselines.
Abstract:Recent unsupervised methods for monocular 3D pose estimation have endeavored to reduce dependence on limited annotated 3D data, but most are solely formulated in 2D space, overlooking the inherent depth ambiguity issue. Due to the information loss in 3D-to-2D projection, multiple potential depths may exist, yet only some of them are plausible in human structure. To tackle depth ambiguity, we propose a novel unsupervised framework featuring a multi-hypothesis detector and multiple tailored pretext tasks. The detector extracts multiple hypotheses from a heatmap within a local window, effectively managing the multi-solution problem. Furthermore, the pretext tasks harness 3D human priors from the SMPL model to regularize the solution space of pose estimation, aligning it with the empirical distribution of 3D human structures. This regularization is partially achieved through a GCN-based discriminator within the discriminative learning, and is further complemented with synthetic images through rendering, ensuring plausible estimations. Consequently, our approach demonstrates state-of-the-art unsupervised 3D pose estimation performance on various human datasets. Further evaluations on data scale-up and one animal dataset highlight its generalization capabilities. Code will be available at https://github.com/Charrrrrlie/X-as-Supervision.
Abstract:In this paper, we highlight a critical yet often overlooked factor in most 3D human tasks, namely modeling humans with complex garments. It is known that the parameterized formulation of SMPL is able to fit human skin; while complex garments, e.g., hand-held objects and loose-fitting garments, are difficult to get modeled within the unified framework, since their movements are usually decoupled with the human body. To enhance the capability of SMPL skeleton in response to this situation, we propose a modular growth strategy that enables the joint tree of the skeleton to expand adaptively. Specifically, our method, called ToMiE, consists of parent joints localization and external joints optimization. For parent joints localization, we employ a gradient-based approach guided by both LBS blending weights and motion kernels. Once the external joints are obtained, we proceed to optimize their transformations in SE(3) across different frames, enabling rendering and explicit animation. ToMiE manages to outperform other methods across various cases with garments, not only in rendering quality but also by offering free animation of grown joints, thereby enhancing the expressive ability of SMPL skeleton for a broader range of applications.
Abstract:Visual emotion analysis holds significant research value in both computer vision and psychology. However, existing methods for visual emotion analysis suffer from limited generalizability due to the ambiguity of emotion perception and the diversity of data scenarios. To tackle this issue, we introduce UniEmoX, a cross-modal semantic-guided large-scale pretraining framework. Inspired by psychological research emphasizing the inseparability of the emotional exploration process from the interaction between individuals and their environment, UniEmoX integrates scene-centric and person-centric low-level image spatial structural information, aiming to derive more nuanced and discriminative emotional representations. By exploiting the similarity between paired and unpaired image-text samples, UniEmoX distills rich semantic knowledge from the CLIP model to enhance emotional embedding representations more effectively. To the best of our knowledge, this is the first large-scale pretraining framework that integrates psychological theories with contemporary contrastive learning and masked image modeling techniques for emotion analysis across diverse scenarios. Additionally, we develop a visual emotional dataset titled Emo8. Emo8 samples cover a range of domains, including cartoon, natural, realistic, science fiction and advertising cover styles, covering nearly all common emotional scenes. Comprehensive experiments conducted on six benchmark datasets across two downstream tasks validate the effectiveness of UniEmoX. The source code is available at https://github.com/chincharles/u-emo.
Abstract:The purpose of face super-resolution (FSR) is to reconstruct high-resolution (HR) face images from low-resolution (LR) inputs. With the continuous advancement of deep learning technologies, contemporary prior-guided FSR methods initially estimate facial priors and then use this information to assist in the super-resolution reconstruction process. However, ensuring the accuracy of prior estimation remains challenging, and straightforward cascading and convolutional operations often fail to fully leverage prior knowledge. Inaccurate or insufficiently utilized prior information inevitably degrades FSR performance. To address this issue, we propose a prior knowledge distillation network (PKDN) for FSR, which involves transferring prior information from the teacher network to the student network. This approach enables the network to learn priors during the training stage while relying solely on low-resolution facial images during the testing stage, thus mitigating the adverse effects of prior estimation inaccuracies. Additionally, we incorporate robust attention mechanisms to design a parsing map fusion block that effectively utilizes prior information. To prevent feature loss, we retain multi-scale features during the feature extraction stage and employ them in the subsequent super-resolution reconstruction process. Experimental results on benchmark datasets demonstrate that our PKDN approach surpasses existing FSR methods in generating high-quality face images.
Abstract:Recent methods using diffusion models have made significant progress in human image generation with various additional controls such as pose priors. However, existing approaches still struggle to generate high-quality images with consistent pose alignment, resulting in unsatisfactory outputs. In this paper, we propose a framework delving into the graph relations of pose priors to provide control information for human image generation. The main idea is to establish a graph topological structure between the pose priors and latent representation of diffusion models to capture the intrinsic associations between different pose parts. A Progressive Graph Integrator (PGI) is designed to learn the spatial relationships of the pose priors with the graph structure, adopting a hierarchical strategy within an Adapter to gradually propagate information across different pose parts. A pose perception loss is further introduced based on a pretrained pose estimation network to minimize the pose differences. Extensive qualitative and quantitative experiments conducted on the Human-Art and LAION-Human datasets demonstrate that our model achieves superior performance, with a 9.98% increase in pose average precision compared to the latest benchmark model. The code is released on *******.