Abstract:The central challenge of AI for Science is not reasoning alone, but the ability to create computational methods in an open-ended scientific world. Existing LLM-based agents rely on static, pre-defined tool libraries, a paradigm that fundamentally fails in scientific domains where tools are sparse, heterogeneous, and intrinsically incomplete. In this paper, we propose Test-Time Tool Evolution (TTE), a new paradigm that enables agents to synthesize, verify, and evolve executable tools during inference. By transforming tools from fixed resources into problem-driven artifacts, TTE overcomes the rigidity and long-tail limitations of static tool libraries. To facilitate rigorous evaluation, we introduce SciEvo, a benchmark comprising 1,590 scientific reasoning tasks supported by 925 automatically evolved tools. Extensive experiments show that TTE achieves state-of-the-art performance in both accuracy and tool efficiency, while enabling effective cross-domain adaptation of computational tools. The code and benchmark have been released at https://github.com/lujiaxuan0520/Test-Time-Tool-Evol.
Abstract:Speculative decoding (SD) has become a standard technique for accelerating LLM inference without sacrificing output quality. Recent advances in speculative decoding have shifted from sequential chain-based drafting to tree-structured generation, where the draft model constructs a tree of candidate tokens to explore multiple possible drafts in parallel. However, existing tree-based SD methods typically build a fixed-width, fixed-depth draft tree, which fails to adapt to the varying difficulty of tokens and contexts. As a result, the draft model cannot dynamically adjust the tree structure to early stop on difficult tokens and extend generation for simple ones. To address these challenges, we introduce TALON, a training-free, budget-driven adaptive tree expansion framework that can be plugged into existing tree-based methods. Unlike static methods, TALON constructs the draft tree iteratively until a fixed token budget is met, using a hybrid expansion strategy that adaptively allocates the node budget to each layer of the draft tree. This framework naturally shapes the draft tree into a "deep-and-narrow" form for deterministic contexts and a "shallow-and-wide" form for uncertain branches, effectively optimizing the trade-off between exploration width and generation depth under a given budget. Extensive experiments across 5 models and 6 datasets demonstrate that TALON consistently outperforms state-of-the-art EAGLE-3, achieving up to 5.16x end-to-end speedup over auto-regressive decoding.
Abstract:Neural rendering, particularly 3D Gaussian Splatting (3DGS), has evolved rapidly and become a key component for building world models. However, existing viewer solutions remain fragmented, heavy, or constrained by legacy pipelines, resulting in high deployment friction and limited support for dynamic content and generative models. In this work, we present Visionary, an open, web-native platform for real-time various Gaussian Splatting and meshes rendering. Built on an efficient WebGPU renderer with per-frame ONNX inference, Visionary enables dynamic neural processing while maintaining a lightweight, "click-to-run" browser experience. It introduces a standardized Gaussian Generator contract, which not only supports standard 3DGS rendering but also allows plug-and-play algorithms to generate or update Gaussians each frame. Such inference also enables us to apply feedforward generative post-processing. The platform further offers a plug in three.js library with a concise TypeScript API for seamless integration into existing web applications. Experiments show that, under identical 3DGS assets, Visionary achieves superior rendering efficiency compared to current Web viewers due to GPU-based primitive sorting. It already supports multiple variants, including MLP-based 3DGS, 4DGS, neural avatars, and style transformation or enhancement networks. By unifying inference and rendering directly in the browser, Visionary significantly lowers the barrier to reproduction, comparison, and deployment of 3DGS-family methods, serving as a unified World Model Carrier for both reconstructive and generative paradigms.
Abstract:Accurate motion prediction of surrounding agents is crucial for the safe planning of autonomous vehicles. Recent advancements have extended prediction techniques from individual agents to joint predictions of multiple interacting agents, with various strategies to address complex interactions within future motions of agents. However, these methods overlook the evolving nature of these interactions. To address this limitation, we propose a novel progressive multi-scale decoding strategy, termed ProgD, with the help of dynamic heterogeneous graph-based scenario modeling. In particular, to explicitly and comprehensively capture the evolving social interactions in future scenarios, given their inherent uncertainty, we design a progressive modeling of scenarios with dynamic heterogeneous graphs. With the unfolding of such dynamic heterogeneous graphs, a factorized architecture is designed to process the spatio-temporal dependencies within future scenarios and progressively eliminate uncertainty in future motions of multiple agents. Furthermore, a multi-scale decoding procedure is incorporated to improve on the future scenario modeling and consistent prediction of agents' future motion. The proposed ProgD achieves state-of-the-art performance on the INTERACTION multi-agent prediction benchmark, ranking $1^{st}$, and the Argoverse 2 multi-world forecasting benchmark.
Abstract:Speculative decoding (SD), where a small draft model is employed to propose draft tokens in advance and then the target model validates them in parallel, has emerged as a promising technique for LLM inference acceleration. Many endeavors to improve SD are to eliminate the need for a draft model and generate draft tokens in a retrieval-based manner in order to further alleviate the drafting overhead and significantly reduce the difficulty in deployment and applications. However, retrieval-based SD relies on a matching paradigm to retrieval the most relevant reference as the draft tokens, where these methods often fail to find matched and accurate draft tokens. To address this challenge, we propose LogitSpec to effectively expand the retrieval range and find the most relevant reference as drafts. Our LogitSpec is motivated by the observation that the logit of the last token can not only predict the next token, but also speculate the next next token. Specifically, LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2) retrieving relevant reference for both the next token and the next next token. LogitSpec is training-free and plug-and-play, which can be easily integrated into existing LLM inference frameworks. Extensive experiments on a wide range of text generation benchmarks demonstrate that LogitSpec can achieve up to 2.61 $\times$ speedup and 3.28 mean accepted tokens per decoding step. Our code is available at https://github.com/smart-lty/LogitSpec.
Abstract:Recent advances in video diffusion models have significantly improved character animation techniques. However, current approaches rely on basic structural conditions such as DWPose or SMPL-X to animate character images, limiting their effectiveness in open-domain scenarios with dynamic backgrounds or challenging human poses. In this paper, we introduce $\textbf{AniCrafter}$, a diffusion-based human-centric animation model that can seamlessly integrate and animate a given character into open-domain dynamic backgrounds while following given human motion sequences. Built on cutting-edge Image-to-Video (I2V) diffusion architectures, our model incorporates an innovative "avatar-background" conditioning mechanism that reframes open-domain human-centric animation as a restoration task, enabling more stable and versatile animation outputs. Experimental results demonstrate the superior performance of our method. Codes will be available at https://github.com/MyNiuuu/AniCrafter.
Abstract:While the diffusion transformer (DiT) has become a focal point of interest in recent years, its application in low-light image enhancement remains a blank area for exploration. Current methods recover the details from low-light images while inevitably amplifying the noise in images, resulting in poor visual quality. In this paper, we firstly introduce DiT into the low-light enhancement task and design a novel Structure-guided Diffusion Transformer based Low-light image enhancement (SDTL) framework. We compress the feature through wavelet transform to improve the inference efficiency of the model and capture the multi-directional frequency band. Then we propose a Structure Enhancement Module (SEM) that uses structural prior to enhance the texture and leverages an adaptive fusion strategy to achieve more accurate enhancement effect. In Addition, we propose a Structure-guided Attention Block (SAB) to pay more attention to texture-riched tokens and avoid interference from noisy areas in noise prediction. Extensive qualitative and quantitative experiments demonstrate that our method achieves SOTA performance on several popular datasets, validating the effectiveness of SDTL in improving image quality and the potential of DiT in low-light enhancement tasks.
Abstract:Micro-expressions are typically regarded as unconscious manifestations of a person's genuine emotions. However, their short duration and subtle signals pose significant challenges for downstream recognition. We propose a multi-task learning framework named the Adaptive Motion Magnification and Sparse Mamba (AMMSM) to address this. This framework aims to enhance the accurate capture of micro-expressions through self-supervised subtle motion magnification, while the sparse spatial selection Mamba architecture combines sparse activation with the advanced Visual Mamba model to model key motion regions and their valuable representations more effectively. Additionally, we employ evolutionary search to optimize the magnification factor and the sparsity ratios of spatial selection, followed by fine-tuning to improve performance further. Extensive experiments on two standard datasets demonstrate that the proposed AMMSM achieves state-of-the-art (SOTA) accuracy and robustness.
Abstract:Despite its significant achievements in large-scale scene reconstruction, 3D Gaussian Splatting still faces substantial challenges, including slow processing, high computational costs, and limited geometric accuracy. These core issues arise from its inherently unstructured design and the absence of efficient parallelization. To overcome these challenges simultaneously, we introduce CityGS-X, a scalable architecture built on a novel parallelized hybrid hierarchical 3D representation (PH^2-3D). As an early attempt, CityGS-X abandons the cumbersome merge-and-partition process and instead adopts a newly-designed batch-level multi-task rendering process. This architecture enables efficient multi-GPU rendering through dynamic Level-of-Detail voxel allocations, significantly improving scalability and performance. Through extensive experiments, CityGS-X consistently outperforms existing methods in terms of faster training times, larger rendering capacities, and more accurate geometric details in large-scale scenes. Notably, CityGS-X can train and render a scene with 5,000+ images in just 5 hours using only 4 * 4090 GPUs, a task that would make other alternative methods encounter Out-Of-Memory (OOM) issues and fail completely. This implies that CityGS-X is far beyond the capacity of other existing methods.




Abstract:We present R3-Avatar, incorporating a temporal codebook, to overcome the inability of human avatars to be both animatable and of high-fidelity rendering quality. Existing video-based reconstruction of 3D human avatars either focuses solely on rendering, lacking animation support, or learns a pose-appearance mapping for animating, which degrades under limited training poses or complex clothing. In this paper, we adopt a "record-retrieve-reconstruct" strategy that ensures high-quality rendering from novel views while mitigating degradation in novel poses. Specifically, disambiguating timestamps record temporal appearance variations in a codebook, ensuring high-fidelity novel-view rendering, while novel poses retrieve corresponding timestamps by matching the most similar training poses for augmented appearance. Our R3-Avatar outperforms cutting-edge video-based human avatar reconstruction, particularly in overcoming visual quality degradation in extreme scenarios with limited training human poses and complex clothing.