Abstract:In this paper, we highlight a critical yet often overlooked factor in most 3D human tasks, namely modeling humans with complex garments. It is known that the parameterized formulation of SMPL is able to fit human skin; while complex garments, e.g., hand-held objects and loose-fitting garments, are difficult to get modeled within the unified framework, since their movements are usually decoupled with the human body. To enhance the capability of SMPL skeleton in response to this situation, we propose a modular growth strategy that enables the joint tree of the skeleton to expand adaptively. Specifically, our method, called ToMiE, consists of parent joints localization and external joints optimization. For parent joints localization, we employ a gradient-based approach guided by both LBS blending weights and motion kernels. Once the external joints are obtained, we proceed to optimize their transformations in SE(3) across different frames, enabling rendering and explicit animation. ToMiE manages to outperform other methods across various cases with garments, not only in rendering quality but also by offering free animation of grown joints, thereby enhancing the expressive ability of SMPL skeleton for a broader range of applications.
Abstract:Visual emotion analysis holds significant research value in both computer vision and psychology. However, existing methods for visual emotion analysis suffer from limited generalizability due to the ambiguity of emotion perception and the diversity of data scenarios. To tackle this issue, we introduce UniEmoX, a cross-modal semantic-guided large-scale pretraining framework. Inspired by psychological research emphasizing the inseparability of the emotional exploration process from the interaction between individuals and their environment, UniEmoX integrates scene-centric and person-centric low-level image spatial structural information, aiming to derive more nuanced and discriminative emotional representations. By exploiting the similarity between paired and unpaired image-text samples, UniEmoX distills rich semantic knowledge from the CLIP model to enhance emotional embedding representations more effectively. To the best of our knowledge, this is the first large-scale pretraining framework that integrates psychological theories with contemporary contrastive learning and masked image modeling techniques for emotion analysis across diverse scenarios. Additionally, we develop a visual emotional dataset titled Emo8. Emo8 samples cover a range of domains, including cartoon, natural, realistic, science fiction and advertising cover styles, covering nearly all common emotional scenes. Comprehensive experiments conducted on six benchmark datasets across two downstream tasks validate the effectiveness of UniEmoX. The source code is available at https://github.com/chincharles/u-emo.
Abstract:The purpose of face super-resolution (FSR) is to reconstruct high-resolution (HR) face images from low-resolution (LR) inputs. With the continuous advancement of deep learning technologies, contemporary prior-guided FSR methods initially estimate facial priors and then use this information to assist in the super-resolution reconstruction process. However, ensuring the accuracy of prior estimation remains challenging, and straightforward cascading and convolutional operations often fail to fully leverage prior knowledge. Inaccurate or insufficiently utilized prior information inevitably degrades FSR performance. To address this issue, we propose a prior knowledge distillation network (PKDN) for FSR, which involves transferring prior information from the teacher network to the student network. This approach enables the network to learn priors during the training stage while relying solely on low-resolution facial images during the testing stage, thus mitigating the adverse effects of prior estimation inaccuracies. Additionally, we incorporate robust attention mechanisms to design a parsing map fusion block that effectively utilizes prior information. To prevent feature loss, we retain multi-scale features during the feature extraction stage and employ them in the subsequent super-resolution reconstruction process. Experimental results on benchmark datasets demonstrate that our PKDN approach surpasses existing FSR methods in generating high-quality face images.
Abstract:Recent methods using diffusion models have made significant progress in human image generation with various additional controls such as pose priors. However, existing approaches still struggle to generate high-quality images with consistent pose alignment, resulting in unsatisfactory outputs. In this paper, we propose a framework delving into the graph relations of pose priors to provide control information for human image generation. The main idea is to establish a graph topological structure between the pose priors and latent representation of diffusion models to capture the intrinsic associations between different pose parts. A Progressive Graph Integrator (PGI) is designed to learn the spatial relationships of the pose priors with the graph structure, adopting a hierarchical strategy within an Adapter to gradually propagate information across different pose parts. A pose perception loss is further introduced based on a pretrained pose estimation network to minimize the pose differences. Extensive qualitative and quantitative experiments conducted on the Human-Art and LAION-Human datasets demonstrate that our model achieves superior performance, with a 9.98% increase in pose average precision compared to the latest benchmark model. The code is released on *******.
Abstract:Training deep learning models for semantic occupancy prediction is challenging due to factors such as a large number of occupancy cells, severe occlusion, limited visual cues, complicated driving scenarios, etc. Recent methods often adopt transformer-based architectures given their strong capability in learning input-conditioned weights and long-range relationships. However, transformer-based networks are notorious for their quadratic computation complexity, seriously undermining their efficacy and deployment in semantic occupancy prediction. Inspired by the global modeling and linear computation complexity of the Mamba architecture, we present the first Mamba-based network for semantic occupancy prediction, termed OccMamba. However, directly applying the Mamba architecture to the occupancy prediction task yields unsatisfactory performance due to the inherent domain gap between the linguistic and 3D domains. To relieve this problem, we present a simple yet effective 3D-to-1D reordering operation, i.e., height-prioritized 2D Hilbert expansion. It can maximally retain the spatial structure of point clouds as well as facilitate the processing of Mamba blocks. Our OccMamba achieves state-of-the-art performance on three prevalent occupancy prediction benchmarks, including OpenOccupancy, SemanticKITTI and SemanticPOSS. Notably, on OpenOccupancy, our OccMamba outperforms the previous state-of-the-art Co-Occ by 3.1% IoU and 3.2% mIoU, respectively. Codes will be released upon publication.
Abstract:Depression is a prevalent mental health disorder that significantly impacts individuals' lives and well-being. Early detection and intervention are crucial for effective treatment and management of depression. Recently, there are many end-to-end deep learning methods leveraging the facial expression features for automatic depression detection. However, most current methods overlook the temporal dynamics of facial expressions. Although very recent 3DCNN methods remedy this gap, they introduce more computational cost due to the selection of CNN-based backbones and redundant facial features. To address the above limitations, by considering the timing correlation of facial expressions, we propose a novel framework called FacialPulse, which recognizes depression with high accuracy and speed. By harnessing the bidirectional nature and proficiently addressing long-term dependencies, the Facial Motion Modeling Module (FMMM) is designed in FacialPulse to fully capture temporal features. Since the proposed FMMM has parallel processing capabilities and has the gate mechanism to mitigate gradient vanishing, this module can also significantly boost the training speed. Besides, to effectively use facial landmarks to replace original images to decrease information redundancy, a Facial Landmark Calibration Module (FLCM) is designed to eliminate facial landmark errors to further improve recognition accuracy. Extensive experiments on the AVEC2014 dataset and MMDA dataset (a depression dataset) demonstrate the superiority of FacialPulse on recognition accuracy and speed, with the average MAE (Mean Absolute Error) decreased by 21% compared to baselines, and the recognition speed increased by 100% compared to state-of-the-art methods. Codes are released at https://github.com/volatileee/FacialPulse.
Abstract:Empathetic response generation, aiming at understanding the user's situation and feelings and respond empathically, is crucial in building human-like dialogue systems. Previous methods mainly focus on using maximum likelihood estimation as the optimization objective for training response generation models, without taking into account the empathy level alignment between generated responses and target responses. To this end, we propose an empathetic response generation using reinforcement learning (EmpRL) framework. The framework designs an effective empathy reward function and generates empathetic responses by maximizing the expected reward through reinforcement learning. Given the powerful text generation capability of pre-trained language models, EmpRL utilizes the pre-trained T5 model as the generator and conducts further training to initialize the policy. To align the empathy level between generated responses and target responses in the context, an empathy reward function containing three empathy communication mechanisms, i.e., emotional reaction, interpretation, and exploration, is constructed using pre-designed and pre-trained empathy identifiers. Finally, the proximal policy optimization algorithm is used to further train the policy to produce empathetic responses. Both automatic and manual evaluations demonstrate that the proposed EmpRL framework can improve the quality of generated responses, enhance the empathy level similarity between generated and target responses, and produce empathetic responses covering both affective and cognitive aspects.
Abstract:In this paper, we present our approach to addressing the challenges of the 7th ABAW competition. The competition comprises three sub-challenges: Valence Arousal (VA) estimation, Expression (Expr) classification, and Action Unit (AU) detection. To tackle these challenges, we employ state-of-the-art models to extract powerful visual features. Subsequently, a Transformer Encoder is utilized to integrate these features for the VA, Expr, and AU sub-challenges. To mitigate the impact of varying feature dimensions, we introduce an affine module to align the features to a common dimension. Overall, our results significantly outperform the baselines.
Abstract:This paper introduces an innovative deep learning-based method for end-to-end target radial length estimation from HRRP (High Resolution Range Profile) sequences. Firstly, the HRRP sequences are normalized and transformed into GAF (Gram Angular Field) images to effectively capture and utilize the temporal information. Subsequently, these GAF images serve as the input for a pretrained ResNet-101 model, which is then fine-tuned for target radial length estimation. The simulation results show that compared to traditional threshold method and simple networks e.g. one-dimensional CNN (Convolutional Neural Network), the proposed method demonstrates superior noise resistance and higher accuracy under low SNR (Signal-to-Noise Ratio) conditions.
Abstract:High Resolution Range Profiles (HRRP) have become a key area of focus in the domain of Radar Automatic Target Recognition (RATR). Despite the success of data-driven neural network-based HRRP recognition, challenges such as insufficient training samples persist in its real-world application. This letter introduces HRRPGraphNet, a novel Graph Neural Network (GNN) model designed specifically for HRRP target recognition that leverages new insights to address these challenges. A pivotal innovation is the transformation of HRRP data into a graph structure, utilizing a range cell amplitude-based node vector and a range-relative adjacency matrix. This graph-based approach facilitates both local feature extraction via one-dimensional convolution layers and global feature extraction through a graph convolution layer, capitalizing on the intrinsic relationships between range cells which is a distinct advantage over existing sequence-based methods. Experiments on the aircraft electromagnetic simulation dataset and the measured dataset have confirmed HRRPGraphNet's superior accuracy and robustness, particularly in fewer training sample environments, underscoring the potential of graph-driven innovations in HRRP-based RATR.