Abstract:Mental health has attracted substantial attention in recent years and LLM can be an effective technology for alleviating this problem owing to its capability in text understanding and dialogue. However, existing research in this domain often suffers from limitations, such as training on datasets lacking crucial prior knowledge and evidence, and the absence of comprehensive evaluation methods. In this paper, we propose a specialized psychological large language model (LLM), named PsycoLLM, trained on a proposed high-quality psychological dataset, including single-turn QA, multi-turn dialogues enriched with prior knowledge and knowledge-based QA. Additionally, to compare the performance of PsycoLLM with other LLMs, we develop a comprehensive psychological benchmark based on authoritative psychological counseling examinations in China, which includes assessments of professional ethics, theoretical proficiency, and case analysis. The experimental results on the benchmark illustrates the effectiveness of PsycoLLM, which demonstrates superior performance compared to other LLMs.
Abstract:In this paper, we present our solutions for the 5th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW), which includes four sub-challenges of Valence-Arousal (VA) Estimation, Expression (Expr) Classification, Action Unit (AU) Detection and Emotional Reaction Intensity (ERI) Estimation. The 5th ABAW competition focuses on facial affect recognition utilizing different modalities and datasets. In our work, we extract powerful audio and visual features using a large number of sota models. These features are fused by Transformer Encoder and TEMMA. Besides, to avoid the possible impact of large dimensional differences between various features, we design an Affine Module to align different features to the same dimension. Extensive experiments demonstrate that the superiority of the proposed method. For the VA Estimation sub-challenge, our method obtains the mean Concordance Correlation Coefficient (CCC) of 0.6066. For the Expression Classification sub-challenge, the average F1 Score is 0.4055. For the AU Detection sub-challenge, the average F1 Score is 0.5296. For the Emotional Reaction Intensity Estimation sub-challenge, the average pearson's correlations coefficient on the validation set is 0.3968. All of the results of four sub-challenges outperform the baseline with a large margin.