Abstract:Micro-expressions are typically regarded as unconscious manifestations of a person's genuine emotions. However, their short duration and subtle signals pose significant challenges for downstream recognition. We propose a multi-task learning framework named the Adaptive Motion Magnification and Sparse Mamba (AMMSM) to address this. This framework aims to enhance the accurate capture of micro-expressions through self-supervised subtle motion magnification, while the sparse spatial selection Mamba architecture combines sparse activation with the advanced Visual Mamba model to model key motion regions and their valuable representations more effectively. Additionally, we employ evolutionary search to optimize the magnification factor and the sparsity ratios of spatial selection, followed by fine-tuning to improve performance further. Extensive experiments on two standard datasets demonstrate that the proposed AMMSM achieves state-of-the-art (SOTA) accuracy and robustness.
Abstract:In this paper, we present our approach to addressing the challenges of the 7th ABAW competition. The competition comprises three sub-challenges: Valence Arousal (VA) estimation, Expression (Expr) classification, and Action Unit (AU) detection. To tackle these challenges, we employ state-of-the-art models to extract powerful visual features. Subsequently, a Transformer Encoder is utilized to integrate these features for the VA, Expr, and AU sub-challenges. To mitigate the impact of varying feature dimensions, we introduce an affine module to align the features to a common dimension. Overall, our results significantly outperform the baselines.