School of Electronic and Information Engineering Liaoning Technical University Xingcheng City, Liaoning Province, P. R. China
Abstract:Image inpainting has earned substantial progress, owing to the encoder-and-decoder pipeline, which is benefited from the Convolutional Neural Networks (CNNs) with convolutional downsampling to inpaint the masked regions semantically from the known regions within the encoder, coupled with an upsampling process from the decoder for final inpainting output. Recent studies intuitively identify the high-frequency structure and low-frequency texture to be extracted by CNNs from the encoder, and subsequently for a desirable upsampling recovery. However, the existing arts inevitably overlook the information loss for both structure and texture feature maps during the convolutional downsampling process, hence suffer from a non-ideal upsampling output. In this paper, we systematically answer whether and how the structure and texture feature map can mutually help to alleviate the information loss during the convolutional downsampling. Given the structure and texture feature maps, we adopt the statistical normalization and denormalization strategy for the reconstruction guidance during the convolutional downsampling process. The extensive experimental results validate its advantages to the state-of-the-arts over the images from low-to-high resolutions including 256*256 and 512*512, especially holds by substituting all the encoders by ours. Our code is available at https://github.com/htyjers/ConvInpaint-TSGL
Abstract:Recent large language models (LLMs) achieve near-saturation accuracy on many established mathematical reasoning benchmarks, raising concerns about their ability to diagnose genuine reasoning competence. This saturation largely stems from the dominance of template-based computation and shallow arithmetic decomposition in existing datasets, which underrepresent reasoning skills such as multi-constraint coordination, constructive logical synthesis, and spatial inference. To address this gap, we introduce ReasoningMath-Plus, a benchmark of 150 carefully curated problems explicitly designed to evaluate structural reasoning. Each problem emphasizes reasoning under interacting constraints, constructive solution formation, or non-trivial structural insight, and is annotated with a minimal reasoning skeleton to support fine-grained process-level evaluation. Alongside the dataset, we introduce HCRS (Hazard-aware Chain-based Rule Score), a deterministic step-level scoring function, and train a Process Reward Model (PRM) on the annotated reasoning traces. Empirically, while leading models attain relatively high final-answer accuracy (up to 5.8/10), HCRS-based holistic evaluation yields substantially lower scores (average 4.36/10, best 5.14/10), showing that answer-only metrics can overestimate reasoning robustness.
Abstract:Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.
Abstract:User behavior modeling lies at the heart of personalized applications like recommender systems. With LLM-based agents, user preference representation has evolved from latent embeddings to semantic memory. While existing memory mechanisms show promise in textual dialogues, modeling non-textual behaviors remains challenging, as preferences must be inferred from implicit signals like clicks without ground truth supervision. Current approaches rely on a single unstructured summary, updated through simple overwriting. However, this is suboptimal: users exhibit multi-faceted interests that get conflated, preferences evolve yet naive overwriting causes forgetting, and sparse individual interactions necessitate collaborative signals. We present STEAM (\textit{\textbf{ST}ructured and \textbf{E}volving \textbf{A}gent \textbf{M}emory}), a novel framework that reimagines how agent memory is organized and updated. STEAM decomposes preferences into atomic memory units, each capturing a distinct interest dimension with explicit links to observed behaviors. To exploit collaborative patterns, STEAM organizes similar memories across users into communities and generates prototype memories for signal propagation. The framework further incorporates adaptive evolution mechanisms, including consolidation for refining memories and formation for capturing emerging interests. Experiments on three real-world datasets demonstrate that STEAM substantially outperforms state-of-the-art baselines in recommendation accuracy, simulation fidelity, and diversity.
Abstract:Respiratory monitoring is an extremely important task in modern medical services. Due to its significant advantages, e.g., non-contact, radar-based respiratory monitoring has attracted widespread attention from both academia and industry. Unfortunately, though it can achieve high monitoring accuracy, consumer electronics-grade radar data inevitably contains User-sensitive Identity Information (USI), which may be maliciously used and further lead to privacy leakage. To track these challenges, by variational mode decomposition (VMD) and adversarial loss-based encryption, we propose a novel Trusted Respiratory Monitoring paradigm, Tru-RM, to perform automated respiratory monitoring through radio signals while effectively anonymizing USI. The key enablers of Tru-RM are Attribute Feature Decoupling (AFD), Flexible Perturbation Encryptor (FPE), and robust Perturbation Tolerable Network (PTN) used for attribute decomposition, identity encryption, and perturbed respiratory monitoring, respectively. Specifically, AFD is designed to decompose the raw radar signals into the universal respiratory component, the personal difference component, and other unrelated components. Then, by using large noise to drown out the other unrelated components, and the phase noise algorithm with a learning intensity parameter to eliminate USI in the personal difference component, FPE is designed to achieve complete user identity information encryption without affecting respiratory features. Finally, by designing the transferred generalized domain-independent network, PTN is employed to accurately detect respiration when waveforms change significantly. Extensive experiments based on various detection distances, respiratory patterns, and durations demonstrate the superior performance of Tru-RM on strong anonymity of USI, and high detection accuracy of perturbed respiratory waveforms.
Abstract:Digital twins are virtual replicas of physical entities and are poised to transform personalized medicine through the real-time simulation and prediction of human physiology. Translating this paradigm from engineering to biomedicine requires overcoming profound challenges, including anatomical variability, multi-scale biological processes, and the integration of multi-physics phenomena. This survey systematically reviews methodologies for building digital twins of human organs, structured around a pipeline decoupled into anatomical twinning (capturing patient-specific geometry and structure) and functional twinning (simulating multi-scale physiology from cellular to organ-level function). We categorize approaches both by organ-specific properties and by technical paradigm, with particular emphasis on multi-scale and multi-physics integration. A key focus is the role of artificial intelligence (AI), especially physics-informed AI, in enhancing model fidelity, scalability, and personalization. Furthermore, we discuss the critical challenges of clinical validation and translational pathways. This study not only charts a roadmap for overcoming current bottlenecks in single-organ twins but also outlines the promising, albeit ambitious, future of interconnected multi-organ digital twins for whole-body precision healthcare.
Abstract:As Large Language Models (LLMs) increasingly shape online content, removing targeted information from well-trained LLMs (also known as LLM unlearning) has become critical for web governance. A key challenge lies in sample-wise imbalance within the forget set: different samples exhibit widely varying unlearning difficulty, leading to asynchronous forgetting where some knowledge remains insufficiently erased while others become over-forgotten. To address this, we propose BalDRO, a novel and efficient framework for balanced LLM unlearning. BalDRO formulates unlearning as a min-sup process: an inner step identifies a worst-case data distribution that emphasizes hard-to-unlearn samples, while an outer step updates model parameters under this distribution. We instantiate BalDRO via two efficient variants: BalDRO-G, a discrete GroupDRO-based approximation focusing on high-loss subsets, and BalDRO-DV, a continuous Donsker-Varadhan dual method enabling smooth adaptive weighting within standard training pipelines. Experiments on TOFU and MUSE show that BalDRO significantly improves both forgetting quality and model utility over existing methods, and we release code for reproducibility.
Abstract:Multi-behavior recommendation faces a critical challenge in practice: auxiliary behaviors (e.g., clicks, carts) are often noisy, weakly correlated, or semantically misaligned with the target behavior (e.g., purchase), which leads to biased preference learning and suboptimal performance. While existing methods attempt to fuse these heterogeneous signals, they inherently lack a principled mechanism to ensure robustness against such behavioral inconsistency. In this work, we propose Robust Multi-Behavior Recommendation towards Target Behaviors (RMBRec), a robust multi-behavior recommendation framework grounded in an information-theoretic robustness principle. We interpret robustness as a joint process of maximizing predictive information while minimizing its variance across heterogeneous behavioral environments. Under this perspective, the Representation Robustness Module (RRM) enhances local semantic consistency by maximizing the mutual information between users' auxiliary and target representations, whereas the Optimization Robustness Module (ORM) enforces global stability by minimizing the variance of predictive risks across behaviors, which is an efficient approximation to invariant risk minimization. This local-global collaboration bridges representation purification and optimization invariance in a theoretically coherent way. Extensive experiments on three real-world datasets demonstrate that RMBRec not only outperforms state-of-the-art methods in accuracy but also maintains remarkable stability under various noise perturbations. For reproducibility, our code is available at https://github.com/miaomiao-cai2/RMBRec/.
Abstract:Recent advances in video reward models and post-training strategies have improved text-to-video (T2V) generation. While these models typically assess visual quality, motion quality, and text alignment, they often overlook key structural distortions, such as abnormal object appearances and interactions, which can degrade the overall quality of the generative video. To address this gap, we introduce REACT, a frame-level reward model designed specifically for structural distortions evaluation in generative videos. REACT assigns point-wise scores and attribution labels by reasoning over video frames, focusing on recognizing distortions. To support this, we construct a large-scale human preference dataset, annotated based on our proposed taxonomy of structural distortions, and generate additional data using a efficient Chain-of-Thought (CoT) synthesis pipeline. REACT is trained with a two-stage framework: ((1) supervised fine-tuning with masked loss for domain knowledge injection, followed by (2) reinforcement learning with Group Relative Policy Optimization (GRPO) and pairwise rewards to enhance reasoning capability and align output scores with human preferences. During inference, a dynamic sampling mechanism is introduced to focus on frames most likely to exhibit distortion. We also present REACT-Bench, a benchmark for generative video distortion evaluation. Experimental results demonstrate that REACT complements existing reward models in assessing structutal distortion, achieving both accurate quantitative evaluations and interpretable attribution analysis.
Abstract:Precise control in modern robotic applications is always an open issue due to unknown time-varying disturbances. Existing meta-learning-based approaches require a shared representation of environmental structures, which lack flexibility for realistic non-structural disturbances. Besides, representation error and the distribution shifts can lead to heavy degradation in prediction accuracy. This work presents a generalizable disturbance estimation framework that builds on meta-learning and feedback-calibrated online adaptation. By extracting features from a finite time window of past observations, a unified representation that effectively captures general non-structural disturbances can be learned without predefined structural assumptions. The online adaptation process is subsequently calibrated by a state-feedback mechanism to attenuate the learning residual originating from the representation and generalizability limitations. Theoretical analysis shows that simultaneous convergence of both the online learning error and the disturbance estimation error can be achieved. Through the unified meta-representation, our framework effectively estimates multiple rapidly changing disturbances, as demonstrated by quadrotor flight experiments. See the project page for video, supplementary material and code: https://nonstructural-metalearn.github.io.