School of Electronic and Information Engineering Liaoning Technical University Xingcheng City, Liaoning Province, P. R. China
Abstract:Leveraging Multimodal Large Language Models (MLLMs) has become pivotal for advancing Universal Multimodal Embeddings (UME) in addressing diverse cross-modal tasks. Recent studies demonstrate that incorporating generative Chain-of-Thought (CoT) reasoning can substantially enhance task-specific representations compared to discriminative methods. However, the generated reasoning CoTs of existing generative embedding methods are limited to the textual analysis of queries and are irrelevant to the retrieval of the targets. To address these limitations, we propose a reasoning-driven UME framework that integrates Embedder-Guided Reinforcement Learning (EG-RL) to optimize the Reasoner to produce evidential Traceability CoT (T-CoT). Our key contributions are threefold: (1) We design an EG-RL framework where the Embedder provides explicit supervision to the Reasoner, ensuring the generated CoT traces are aligned with embedding tasks. (2) We introduce T-CoT, which extracts critical multimodal cues to focus on retrieval-relevant elements and provides multimodal inputs for the Embedder. (3) With limited computational resources, our framework outperforms the pioneering embedding model on both MMEB-V2 and UVRB benchmarks. The integration of multimodal evidence in structured reasoning, paired with retrieval-oriented alignment, effectively strengthens cross-modal semantic consistency and boosts the fine-grained matching capability of the model as well as the generalization across complex scenarios. Our work demonstrates that targeted reasoning optimization can significantly improve multimodal embedding quality, providing a practical and efficient solution for reasoning-driven UME development.
Abstract:The recent empirical success of Mamba and other selective state space models (SSMs) has renewed interest in non-attention architectures for sequence modeling, yet their theoretical foundations remain underexplored. We present a first-step analysis of generalization and learning dynamics for a simplified but representative Mamba block: a single-layer, single-head selective SSM with input-dependent gating, followed by a two-layer MLP trained via gradient descent (GD). Our study adopts a structured data model with tokens that include both class-relevant and class-irrelevant patterns under token-level noise and examines two canonical regimes: majority-voting and locality-structured data sequences. We prove that the model achieves guaranteed generalization by establishing non-asymptotic sample complexity and convergence rate bounds, which improve as the effective signal increases and the noise decreases. Furthermore, we show that the gating vector aligns with class-relevant features while ignoring irrelevant ones, thereby formalizing a feature-selection role similar to attention but realized through selective recurrence. Numerical experiments on synthetic data justify our theoretical results. Overall, our results provide principled insight into when and why Mamba-style selective SSMs learn efficiently, offering a theoretical counterpoint to Transformer-centric explanations.
Abstract:Indirect editing methods for 3D Gaussian Splatting (3DGS) have recently witnessed significant advancements. These approaches operate by first applying edits in the rendered 2D space and subsequently projecting the modifications back into 3D. However, this paradigm inevitably introduces cross-view inconsistencies and constrains both the flexibility and efficiency of the editing process. To address these challenges, we present VF-Editor, which enables native editing of Gaussian primitives by predicting attribute variations in a feedforward manner. To accurately and efficiently estimate these variations, we design a novel variation predictor distilled from 2D editing knowledge. The predictor encodes the input to generate a variation field and employs two learnable, parallel decoding functions to iteratively infer attribute changes for each 3D Gaussian. Thanks to its unified design, VF-Editor can seamlessly distill editing knowledge from diverse 2D editors and strategies into a single predictor, allowing for flexible and effective knowledge transfer into the 3D domain. Extensive experiments on both public and private datasets reveal the inherent limitations of indirect editing pipelines and validate the effectiveness and flexibility of our approach.
Abstract:Multimodal large language models (MLLMs) have achieved strong performance on perception-oriented tasks, yet their ability to perform mathematical spatial reasoning, defined as the capacity to parse and manipulate two- and three-dimensional relations, remains unclear. Humans easily solve textbook-style spatial reasoning problems with over 95\% accuracy, but we find that most leading MLLMs fail to reach even 60\% on the same tasks. This striking gap highlights spatial reasoning as a fundamental weakness of current models. To investigate this gap, we present MathSpatial, a unified framework for evaluating and improving spatial reasoning in MLLMs. MathSpatial includes three complementary components: (i) MathSpatial-Bench, a benchmark of 2K problems across three categories and eleven subtypes, designed to isolate reasoning difficulty from perceptual noise; (ii) MathSpatial-Corpus, a training dataset of 8K additional problems with verified solutions; and (iii) MathSpatial-SRT, which models reasoning as structured traces composed of three atomic operations--Correlate, Constrain, and Infer. Experiments show that fine-tuning Qwen2.5-VL-7B on MathSpatial achieves competitive accuracy while reducing tokens by 25\%. MathSpatial provides the first large-scale resource that disentangles perception from reasoning, enabling precise measurement and comprehensive understanding of mathematical spatial reasoning in MLLMs.
Abstract:Contrastive learning has emerged as a powerful framework for learning generalizable representations, yet its theoretical understanding remains limited, particularly under imbalanced data distributions that are prevalent in real-world applications. Such an imbalance can degrade representation quality and induce biased model behavior, yet a rigorous characterization of these effects is lacking. In this work, we develop a theoretical framework to analyze the training dynamics of contrastive learning with Transformer-based encoders under imbalanced data. Our results reveal that neuron weights evolve through three distinct stages of training, with different dynamics for majority features, minority features, and noise. We further show that minority features reduce representational capacity, increase the need for more complex architectures, and hinder the separation of ground-truth features from noise. Inspired by these neuron-level behaviors, we show that pruning restores performance degraded by imbalance and enhances feature separation, offering both conceptual insights and practical guidance. Major theoretical findings are validated through numerical experiments.
Abstract:Reinforcement learning from human feedback (RLHF) shows promise for aligning diffusion and flow models, yet policy optimization methods such as GRPO suffer from inefficient and static sampling strategies. These methods treat all prompts and denoising steps uniformly, ignoring substantial variations in sample learning value as well as the dynamic nature of critical exploration moments. To address this issue, we conduct a detailed analysis of the internal attention dynamics during GRPO training and uncover a key insight: attention entropy can serve as a powerful dual-signal proxy. First, across different samples, the relative change in attention entropy (ΔEntropy), which reflects the divergence between the current policy and the base policy, acts as a robust indicator of sample learning value. Second, during the denoising process, the peaks of absolute attention entropy (Entropy(t)), which quantify attention dispersion, effectively identify critical timesteps where high-value exploration occurs. Building on this observation, we propose Adaptive Entropy-Guided Policy Optimization (AEGPO), a novel dual-signal, dual-level adaptive optimization strategy. At the global level, AEGPO uses ΔEntropy to dynamically allocate rollout budgets, prioritizing prompts with higher learning value. At the local level, it exploits the peaks of Entropy(t) to guide exploration selectively at critical high-dispersion timesteps rather than uniformly across all denoising steps. By focusing computation on the most informative samples and the most critical moments, AEGPO enables more efficient and effective policy optimization. Experiments on text-to-image generation tasks demonstrate that AEGPO significantly accelerates convergence and achieves superior alignment performance compared to standard GRPO variants.
Abstract:Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
Abstract:Image inpainting has earned substantial progress, owing to the encoder-and-decoder pipeline, which is benefited from the Convolutional Neural Networks (CNNs) with convolutional downsampling to inpaint the masked regions semantically from the known regions within the encoder, coupled with an upsampling process from the decoder for final inpainting output. Recent studies intuitively identify the high-frequency structure and low-frequency texture to be extracted by CNNs from the encoder, and subsequently for a desirable upsampling recovery. However, the existing arts inevitably overlook the information loss for both structure and texture feature maps during the convolutional downsampling process, hence suffer from a non-ideal upsampling output. In this paper, we systematically answer whether and how the structure and texture feature map can mutually help to alleviate the information loss during the convolutional downsampling. Given the structure and texture feature maps, we adopt the statistical normalization and denormalization strategy for the reconstruction guidance during the convolutional downsampling process. The extensive experimental results validate its advantages to the state-of-the-arts over the images from low-to-high resolutions including 256*256 and 512*512, especially holds by substituting all the encoders by ours. Our code is available at https://github.com/htyjers/ConvInpaint-TSGL
Abstract:Recent large language models (LLMs) achieve near-saturation accuracy on many established mathematical reasoning benchmarks, raising concerns about their ability to diagnose genuine reasoning competence. This saturation largely stems from the dominance of template-based computation and shallow arithmetic decomposition in existing datasets, which underrepresent reasoning skills such as multi-constraint coordination, constructive logical synthesis, and spatial inference. To address this gap, we introduce ReasoningMath-Plus, a benchmark of 150 carefully curated problems explicitly designed to evaluate structural reasoning. Each problem emphasizes reasoning under interacting constraints, constructive solution formation, or non-trivial structural insight, and is annotated with a minimal reasoning skeleton to support fine-grained process-level evaluation. Alongside the dataset, we introduce HCRS (Hazard-aware Chain-based Rule Score), a deterministic step-level scoring function, and train a Process Reward Model (PRM) on the annotated reasoning traces. Empirically, while leading models attain relatively high final-answer accuracy (up to 5.8/10), HCRS-based holistic evaluation yields substantially lower scores (average 4.36/10, best 5.14/10), showing that answer-only metrics can overestimate reasoning robustness.
Abstract:Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.