School of Electronic and Information Engineering Liaoning Technical University Xingcheng City, Liaoning Province, P. R. China
Abstract:Image-based virtual try-on, widely used in online shopping, aims to generate images of a naturally dressed person conditioned on certain garments, providing significant research and commercial potential. A key challenge of try-on is to generate realistic images of the model wearing the garments while preserving the details of the garments. Previous methods focus on masking certain parts of the original model's standing image, and then inpainting on masked areas to generate realistic images of the model wearing corresponding reference garments, which treat the try-on task as an inpainting task. However, such implements require the user to provide a complete, high-quality standing image, which is user-unfriendly in practical applications. In this paper, we propose Try-On-Adapter (TOA), an outpainting paradigm that differs from the existing inpainting paradigm. Our TOA can preserve the given face and garment, naturally imagine the rest parts of the image, and provide flexible control ability with various conditions, e.g., garment properties and human pose. In the experiments, TOA shows excellent performance on the virtual try-on task even given relatively low-quality face and garment images in qualitative comparisons. Additionally, TOA achieves the state-of-the-art performance of FID scores 5.56 and 7.23 for paired and unpaired on the VITON-HD dataset in quantitative comparisons.
Abstract:Large Language Models (LLMs) have recently garnered significant attention in various domains, including recommendation systems. Recent research leverages the capabilities of LLMs to improve the performance and user modeling aspects of recommender systems. These studies primarily focus on utilizing LLMs to interpret textual data in recommendation tasks. However, it's worth noting that in ID-based recommendations, textual data is absent, and only ID data is available. The untapped potential of LLMs for ID data within the ID-based recommendation paradigm remains relatively unexplored. To this end, we introduce a pioneering approach called "LLM for ID-based Recommendation" (LLM4IDRec). This innovative approach integrates the capabilities of LLMs while exclusively relying on ID data, thus diverging from the previous reliance on textual data. The basic idea of LLM4IDRec is that by employing LLM to augment ID data, if augmented ID data can improve recommendation performance, it demonstrates the ability of LLM to interpret ID data effectively, exploring an innovative way for the integration of LLM in ID-based recommendation. We evaluate the effectiveness of our LLM4IDRec approach using three widely-used datasets. Our results demonstrate a notable improvement in recommendation performance, with our approach consistently outperforming existing methods in ID-based recommendation by solely augmenting input data.
Abstract:One of the important factors of profitability is the volume of transactions. An accurate prediction of the future transaction volume becomes a pivotal factor in shaping corporate operations and decision-making processes. E-commerce has presented manufacturers with convenient sales channels to, with which the sales can increase dramatically. In this study, we introduce a solution that leverages the XGBoost model to tackle the challenge of predict-ing sales for consumer electronics products on the Amazon platform. Initial-ly, our attempts to solely predict sales volume yielded unsatisfactory results. However, by replacing the sales volume data with sales range values, we achieved satisfactory accuracy with our model. Furthermore, our results in-dicate that XGBoost exhibits superior predictive performance compared to traditional models.
Abstract:Recent advancements in image-text matching have been notable, yet prevailing models predominantly cater to broad queries and struggle with accommodating fine-grained query intention. In this paper, we work towards the \textbf{E}ntity-centric \textbf{I}mage-\textbf{T}ext \textbf{M}atching (EITM), a task that the text and image involve specific entity-related information. The challenge of this task mainly lies in the larger semantic gap in entity association modeling, comparing with the general image-text matching problem.To narrow the huge semantic gap between the entity-centric text and the images, we take the fundamental CLIP as the backbone and devise a multimodal attentive contrastive learning framework to tam CLIP to adapt EITM problem, developing a model named EntityCLIP. The key of our multimodal attentive contrastive learning is to generate interpretive explanation text using Large Language Models (LLMs) as the bridge clues. In specific, we proceed by extracting explanatory text from off-the-shelf LLMs. This explanation text, coupled with the image and text, is then input into our specially crafted Multimodal Attentive Experts (MMAE) module, which effectively integrates explanation texts to narrow the gap of the entity-related text and image in a shared semantic space. Building on the enriched features derived from MMAE, we further design an effective Gated Integrative Image-text Matching (GI-ITM) strategy. The GI-ITM employs an adaptive gating mechanism to aggregate MMAE's features, subsequently applying image-text matching constraints to steer the alignment between the text and the image. Extensive experiments are conducted on three social media news benchmarks including N24News, VisualNews, and GoodNews, the results shows that our method surpasses the competition methods with a clear margin.
Abstract:Accurate arrival time prediction (ATP) of buses and trams plays a crucial role in public transport operations. Current methods focused on modeling one-dimensional temporal information but overlooked the latent periodic information within time series. Moreover, most studies developed algorithms for ATP based on a single or a few routes of public transport, which reduces the transferability of the prediction models and their applicability in public transport management systems. To this end, this paper proposes \textit{ArrivalNet}, a two-dimensional temporal variation-based multi-step ATP for buses and trams. It decomposes the one-dimensional temporal sequence into intra-periodic and inter-periodic variations, which can be recast into two-dimensional tensors (2D blocks). Each row of a tensor contains the time points within a period, and each column involves the time points at the same intra-periodic index across various periods. The transformed 2D blocks in different frequencies have an image-like feature representation that enables effective learning with computer vision backbones (e.g., convolutional neural network). Drawing on the concept of residual neural network, the 2D block module is designed as a basic module for flexible aggregation. Meanwhile, contextual factors like workdays, peak hours, and intersections, are also utilized in the augmented feature representation to improve the performance of prediction. 125 days of public transport data from Dresden were collected for model training and validation. Experimental results show that the root mean square error, mean absolute error, and mean absolute percentage error of the proposed predictor decrease by at least 6.1\%, 14.7\%, and 34.2\% compared with state-of-the-art baseline methods.
Abstract:Generalized zero-shot learning (GZSL) endeavors to identify the unseen categories using knowledge from the seen domain, necessitating the intrinsic interactions between the visual features and attribute semantic features. However, GZSL suffers from insufficient visual-semantic correspondences due to the attribute diversity and instance diversity. Attribute diversity refers to varying semantic granularity in attribute descriptions, ranging from low-level (specific, directly observable) to high-level (abstract, highly generic) characteristics. This diversity challenges the collection of adequate visual cues for attributes under a uni-granularity. Additionally, diverse visual instances corresponding to the same sharing attributes introduce semantic ambiguity, leading to vague visual patterns. To tackle these problems, we propose a multi-granularity progressive semantic-visual mutual adaption (PSVMA+) network, where sufficient visual elements across granularity levels can be gathered to remedy the granularity inconsistency. PSVMA+ explores semantic-visual interactions at different granularity levels, enabling awareness of multi-granularity in both visual and semantic elements. At each granularity level, the dual semantic-visual transformer module (DSVTM) recasts the sharing attributes into instance-centric attributes and aggregates the semantic-related visual regions, thereby learning unambiguous visual features to accommodate various instances. Given the diverse contributions of different granularities, PSVMA+ employs selective cross-granularity learning to leverage knowledge from reliable granularities and adaptively fuses multi-granularity features for comprehensive representations. Experimental results demonstrate that PSVMA+ consistently outperforms state-of-the-art methods.
Abstract:The well-known generalization problem hinders the application of artificial neural networks in continuous-time prediction tasks with varying latent dynamics. In sharp contrast, biological systems can neatly adapt to evolving environments benefiting from real-time feedback mechanisms. Inspired by the feedback philosophy, we present feedback neural networks, showing that a feedback loop can flexibly correct the learned latent dynamics of neural ordinary differential equations (neural ODEs), leading to a prominent generalization improvement. The feedback neural network is a novel two-DOF neural network, which possesses robust performance in unseen scenarios with no loss of accuracy performance on previous tasks. A linear feedback form is presented to correct the learned latent dynamics firstly, with a convergence guarantee. Then, domain randomization is utilized to learn a nonlinear neural feedback form. Finally, extensive tests including trajectory prediction of a real irregular object and model predictive control of a quadrotor with various uncertainties, are implemented, indicating significant improvements over state-of-the-art model-based and learning-based methods.
Abstract:Engagement estimation plays a crucial role in understanding human social behaviors, attracting increasing research interests in fields such as affective computing and human-computer interaction. In this paper, we propose a Dialogue-Aware Transformer framework (DAT) with Modality-Group Fusion (MGF), which relies solely on audio-visual input and is language-independent, for estimating human engagement in conversations. Specifically, our method employs a modality-group fusion strategy that independently fuses audio and visual features within each modality for each person before inferring the entire audio-visual content. This strategy significantly enhances the model's performance and robustness. Additionally, to better estimate the target participant's engagement levels, the introduced Dialogue-Aware Transformer considers both the participant's behavior and cues from their conversational partners. Our method was rigorously tested in the Multi-Domain Engagement Estimation Challenge held by MultiMediate'24, demonstrating notable improvements in engagement-level regression precision over the baseline model. Notably, our approach achieves a CCC score of 0.76 on the NoXi Base test set and an average CCC of 0.64 across the NoXi Base, NoXi-Add, and MPIIGI test sets.
Abstract:Chain-of-Thought (CoT) is an efficient prompting method that enables the reasoning ability of large language models by augmenting the query using multiple examples with multiple intermediate steps. Despite the empirical success, the theoretical understanding of how to train a Transformer to achieve the CoT ability remains less explored. This is primarily due to the technical challenges involved in analyzing the nonconvex optimization on nonlinear attention models. To the best of our knowledge, this work provides the first theoretical study of training Transformers with nonlinear attention to obtain the CoT generalization capability so that the resulting model can inference on unseen tasks when the input is augmented by examples of the new task. We first quantify the required training samples and iterations to train a Transformer model towards CoT ability. We then prove the success of its CoT generalization on unseen tasks with distribution-shifted testing data. Moreover, we theoretically characterize the conditions for an accurate reasoning output by CoT even when the provided reasoning examples contain noises and are not always accurate. In contrast, in-context learning (ICL), which can be viewed as one-step CoT without intermediate steps, may fail to provide an accurate output when CoT does. These theoretical findings are justified through experiments.
Abstract:Emerging of visual language models, such as the segment anything model (SAM), have made great breakthroughs in the field of universal semantic segmentation and significantly aid the improvements of medical image segmentation, in particular with the help of Medical SAM adaptor (Med-SA). However, Med-SA still can be improved, as it fine-tunes SAM in a partial adaption manner. To resolve this problem, we present a novel global medical SAM adaptor (GMed-SA) with full adaption, which can adapt SAM globally. We further combine GMed-SA and Med-SA to propose a global-local medical SAM adaptor (GLMed-SA) to adapt SAM both globally and locally. Extensive experiments have been performed on the challenging public 2D melanoma segmentation dataset. The results show that GLMed-SA outperforms several state-of-the-art semantic segmentation methods on various evaluation metrics, demonstrating the superiority of our methods.