Abstract:Large Language Models (LLMs) have achieved remarkable success across various domains, yet deploying them on mobile devices remains an arduous challenge due to their extensive computational and memory demands. While lightweight LLMs have been developed to fit mobile environments, they suffer from degraded model accuracy. In contrast, sparsity-based techniques minimize DRAM usage by selectively transferring only relevant neurons to DRAM while retaining the full model in external storage, such as flash. However, such approaches are critically limited by numerous I/O operations, particularly on smartphones with severe IOPS constraints. In this paper, we propose Ripple, a novel approach that accelerates LLM inference on smartphones by optimizing neuron placement in flash memory. Ripple leverages the concept of Neuron Co-Activation, where neurons frequently activated together are linked to facilitate continuous read access and optimize data transfer efficiency. Our approach incorporates a two-stage solution: an offline stage that reorganizes neuron placement based on co-activation patterns, and an online stage that employs tailored data access and caching strategies to align well with hardware characteristics. Evaluations conducted on a variety of smartphones and LLMs demonstrate that Ripple achieves up to 5.93x improvements in I/O latency compared to the state-of-the-art. As the first solution to optimize storage placement under sparsity, Ripple explores a new optimization space at the intersection of sparsity-driven algorithm and storage-level system co-design in LLM inference.
Abstract:Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA) due to their structured representation of knowledge. Existing research on the utilization of KG for large language models (LLMs) prevalently relies on subgraph retriever or iterative prompting, overlooking the potential synergy of LLMs' step-wise reasoning capabilities and KGs' structural nature. In this paper, we present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs. We first define a concept, well-formed chain, which consists of a sequence of interrelated fact triplets on the KGs, starting from question entities and leading to answers. We argue that this concept can serve as a principle for making faithful and sound reasoning for KGQA. To enable LLMs to generate well-formed chains, we propose graph-aware constrained decoding, in which a constraint derived from the topology of the KG regulates the decoding process of the LLMs. This constrained decoding method ensures the generation of well-formed chains while making full use of the step-wise reasoning capabilities of LLMs. Based on the above, DoG, a training-free approach, is able to provide faithful and sound reasoning trajectories grounded on the KGs. Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance. DoG also shows general applicability with various open-source LLMs.
Abstract:Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby preventing error propagation during diffusion process. Guided by physically and chemically detailed textual descriptions, TransDLM samples and optimizes encoded source molecules, retaining core scaffolds of source molecules and ensuring structural similarities. Moreover, TransDLM enables simultaneous sampling of multiple molecules, making it ideal for scalable, efficient large-scale optimization through distributed computation on web platforms. Furthermore, our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset. The code is available at: https://anonymous.4open.science/r/TransDLM-A901.
Abstract:Offline handwritten signature verification systems are used to verify the identity of individuals, through recognizing their handwritten signature image as genuine signatures or forgeries. The main tasks of signature verification systems include extracting features from signature images and training a classifier for classification. The challenges of these tasks are twofold. First, genuine signatures and skilled forgeries are highly similar in their appearances, resulting in a small inter-class distance. Second, the instances of skilled forgeries are often unavailable, when signature verification models are being trained. To tackle these problems, this paper proposes a new signature verification method. It is the first model that employs a variational autoencoder (VAE) to extract features directly from signature images. To make the features more discriminative, it improves the traditional VAEs by introducing a new loss function for feature disentangling. In addition, it relies on SVM (Support Vector Machine) for classification according to the extracted features. Extensive experiments are conducted on two public datasets: MCYT-75 and GPDS-synthetic where the proposed method significantly outperformed $13$ representative offline signature verification methods. The achieved improvement in distinctive datasets indicates the robustness and great potential of the developed system in real application.
Abstract:Zero-shot learning (ZSL) aims to recognize unseen classes by transferring semantic knowledge from seen classes to unseen ones, guided by semantic information. To this end, existing works have demonstrated remarkable performance by utilizing global visual features from Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs) for visual-semantic interactions. Due to the limited receptive fields of CNNs and the quadratic complexity of ViTs, however, these visual backbones achieve suboptimal visual-semantic interactions. In this paper, motivated by the visual state space model (i.e., Vision Mamba), which is capable of capturing long-range dependencies and modeling complex visual dynamics, we propose a parameter-efficient ZSL framework called ZeroMamba to advance ZSL. Our ZeroMamba comprises three key components: Semantic-aware Local Projection (SLP), Global Representation Learning (GRL), and Semantic Fusion (SeF). Specifically, SLP integrates semantic embeddings to map visual features to local semantic-related representations, while GRL encourages the model to learn global semantic representations. SeF combines these two semantic representations to enhance the discriminability of semantic features. We incorporate these designs into Vision Mamba, forming an end-to-end ZSL framework. As a result, the learned semantic representations are better suited for classification. Through extensive experiments on four prominent ZSL benchmarks, ZeroMamba demonstrates superior performance, significantly outperforming the state-of-the-art (i.e., CNN-based and ViT-based) methods under both conventional ZSL (CZSL) and generalized ZSL (GZSL) settings. Code is available at: https://anonymous.4open.science/r/ZeroMamba.
Abstract:Molecular optimization is a crucial aspect of drug discovery, aimed at refining molecular structures to enhance drug efficacy and minimize side effects, ultimately accelerating the overall drug development process. Many target-based molecular optimization methods have been proposed, significantly advancing drug discovery. These methods primarily on understanding the specific drug target structures or their hypothesized roles in combating diseases. However, challenges such as a limited number of available targets and a difficulty capturing clear structures hinder innovative drug development. In contrast, phenotypic drug discovery (PDD) does not depend on clear target structures and can identify hits with novel and unbiased polypharmacology signatures. As a result, PDD-based molecular optimization can reduce potential safety risks while optimizing phenotypic activity, thereby increasing the likelihood of clinical success. Therefore, we propose a fragment-masked molecular optimization method based on PDD (FMOP). FMOP employs a regression-free diffusion model to conditionally optimize the molecular masked regions without training, effectively generating new molecules with similar scaffolds. On the large-scale drug response dataset GDSCv2, we optimize the potential molecules across all 945 cell lines. The overall experiments demonstrate that the in-silico optimization success rate reaches 94.4%, with an average efficacy increase of 5.3%. Additionally, we conduct extensive ablation and visualization experiments, confirming that FMOP is an effective and robust molecular optimization method. The code is available at:https://anonymous.4open.science/r/FMOP-98C2.
Abstract:In this paper, we briefly introduce the solution developed by our team, HFUT-VUT, for the track of Micro-gesture Classification in the MiGA challenge at IJCAI 2024. The task of micro-gesture classification task involves recognizing the category of a given video clip, which focuses on more fine-grained and subtle body movements compared to typical action recognition tasks. Given the inherent complexity of micro-gesture recognition, which includes large intra-class variability and minimal inter-class differences, we utilize two innovative modules, i.e., the cross-modal fusion module and prototypical refinement module, to improve the discriminative ability of MG features, thereby improving the classification accuracy. Our solution achieved significant success, ranking 1st in the track of Micro-gesture Classification. We surpassed the performance of last year's leading team by a substantial margin, improving Top-1 accuracy by 6.13%.
Abstract:In recent years, the rise of Large Language Models (LLMs) has spurred a growing demand for plug-and-play AI systems. Among the various AI techniques, prompt engineering stands out as particularly significant. However, users often face challenges in writing prompts due to the steep learning curve and significant time investment, and existing automatic prompt engineering (APE) models can be difficult to use. To address this issue, we propose PAS, an LLM-based plug-and-play APE system. PAS utilizes LLMs trained on high-quality, automatically generated prompt complementary datasets, resulting in exceptional performance. In comprehensive benchmarks, PAS achieves state-of-the-art (SoTA) results compared to previous APE models, with an average improvement of 6.09 points. Moreover, PAS is highly efficient, achieving SoTA performance with only 9000 data points. Additionally, PAS can autonomously generate prompt augmentation data without requiring additional human labor. Its flexibility also allows it to be compatible with all existing LLMs and applicable to a wide range of tasks. PAS excels in human evaluations, underscoring its suitability as a plug-in for users. This combination of high performance, efficiency, and flexibility makes PAS a valuable system for enhancing the usability and effectiveness of LLMs through improved prompt engineering.
Abstract:This paper introduces Standard Basis LoRA (SBoRA), a novel parameter-efficient fine-tuning approach for Large Language Models that builds upon the pioneering works of Low-Rank Adaptation (LoRA) and Orthogonal Adaptation. SBoRA further reduces the computational and memory requirements of LoRA while enhancing learning performance. By leveraging orthogonal standard basis vectors to initialize one of the low-rank matrices, either A or B, SBoRA enables regional weight updates and memory-efficient fine-tuning. This approach gives rise to two variants, SBoRA-FA and SBoRA-FB, where only one of the matrices is updated, resulting in a sparse update matrix with a majority of zero rows or columns. Consequently, the majority of the fine-tuned model's weights remain unchanged from the pre-trained weights. This characteristic of SBoRA, wherein regional weight updates occur, is reminiscent of the modular organization of the human brain, which efficiently adapts to new tasks. Our empirical results demonstrate the superiority of SBoRA-FA over LoRA in various fine-tuning tasks, including commonsense reasoning and arithmetic reasoning. Furthermore, we evaluate the effectiveness of QSBoRA on quantized LLaMA models of varying scales, highlighting its potential for efficient adaptation to new tasks. Code is available at https://github.com/cityuhkai/SBoRA
Abstract:Human body actions are an important form of non-verbal communication in social interactions. This paper focuses on a specific subset of body actions known as micro-actions, which are subtle, low-intensity body movements that provide a deeper understanding of inner human feelings. In real-world scenarios, human micro-actions often co-occur, with multiple micro-actions overlapping in time, such as simultaneous head and hand movements. However, current research primarily focuses on recognizing individual micro-actions while overlooking their co-occurring nature. To narrow this gap, we propose a new task named Multi-label Micro-Action Detection (MMAD), which involves identifying all micro-actions in a given short video, determining their start and end times, and categorizing them. Achieving this requires a model capable of accurately capturing both long-term and short-term action relationships to locate and classify multiple micro-actions. To support the MMAD task, we introduce a new dataset named Multi-label Micro-Action-52 (MMA-52), specifically designed to facilitate the detailed analysis and exploration of complex human micro-actions. The proposed MMA-52 dataset is available at: https://github.com/VUT-HFUT/Micro-Action.