Abstract:Sign Language Production (SLP) aims to generate sign videos corresponding to spoken language sentences, where the conversion of sign Glosses to Poses (G2P) is the key step. Due to the cross-modal semantic gap and the lack of word-action correspondence labels for strong supervision alignment, the SLP suffers huge challenges in linguistics-vision consistency. In this work, we propose a Transformer-based Linguistics-Vision Monotonic Consistent Network (LVMCN) for SLP, which constrains fine-grained cross-modal monotonic alignment and coarse-grained multimodal semantic consistency in language-visual cues through Cross-modal Semantic Aligner (CSA) and Multimodal Semantic Comparator (MSC). In the CSA, we constrain the implicit alignment between corresponding gloss and pose sequences by computing the cosine similarity association matrix between cross-modal feature sequences (i.e., the order consistency of fine-grained sign glosses and actions). As for MSC, we construct multimodal triplets based on paired and unpaired samples in batch data. By pulling closer the corresponding text-visual pairs and pushing apart the non-corresponding text-visual pairs, we constrain the semantic co-occurrence degree between corresponding gloss and pose sequences (i.e., the semantic consistency of coarse-grained textual sentences and sign videos). Extensive experiments on the popular PHOENIX14T benchmark show that the LVMCN outperforms the state-of-the-art.
Abstract:Molecular representation learning plays a crucial role in various downstream tasks, such as molecular property prediction and drug design. To accurately represent molecules, Graph Neural Networks (GNNs) and Graph Transformers (GTs) have shown potential in the realm of self-supervised pretraining. However, existing approaches often overlook the relationship between molecular structure and electronic information, as well as the internal semantic reasoning within molecules. This omission of fundamental chemical knowledge in graph semantics leads to incomplete molecular representations, missing the integration of structural and electronic data. To address these issues, we introduce MOL-Mamba, a framework that enhances molecular representation by combining structural and electronic insights. MOL-Mamba consists of an Atom & Fragment Mamba-Graph (MG) for hierarchical structural reasoning and a Mamba-Transformer (MT) fuser for integrating molecular structure and electronic correlation learning. Additionally, we propose a Structural Distribution Collaborative Training and E-semantic Fusion Training framework to further enhance molecular representation learning. Extensive experiments demonstrate that MOL-Mamba outperforms state-of-the-art baselines across eleven chemical-biological molecular datasets. Code is available at https://github.com/xian-sh/MOL-Mamba.
Abstract:Micro-Action Recognition (MAR) has gained increasing attention due to its crucial role as a form of non-verbal communication in social interactions, with promising potential for applications in human communication and emotion analysis. However, current approaches often overlook the inherent ambiguity in micro-actions, which arises from the wide category range and subtle visual differences between categories. This oversight hampers the accuracy of micro-action recognition. In this paper, we propose a novel Prototypical Calibrating Ambiguous Network (\textbf{PCAN}) to unleash and mitigate the ambiguity of MAR. \textbf{Firstly}, we employ a hierarchical action-tree to identify the ambiguous sample, categorizing them into distinct sets of ambiguous samples of false negatives and false positives, considering both body- and action-level categories. \textbf{Secondly}, we implement an ambiguous contrastive refinement module to calibrate these ambiguous samples by regulating the distance between ambiguous samples and their corresponding prototypes. This calibration process aims to pull false negative ($\mathbb{FN}$) samples closer to their respective prototypes and push false positive ($\mathbb{FP}$) samples apart from their affiliated prototypes. In addition, we propose a new prototypical diversity amplification loss to strengthen the model's capacity by amplifying the differences between different prototypes. \textbf{Finally}, we propose a prototype-guided rectification to rectify prediction by incorporating the representability of prototypes. Extensive experiments conducted on the benchmark dataset demonstrate the superior performance of our method compared to existing approaches. The code is available at https://github.com/kunli-cs/PCAN.
Abstract:Sign Language Production (SLP) aims to generate semantically consistent sign videos from textual statements, where the conversion from textual glosses to sign poses (G2P) is a crucial step. Existing G2P methods typically treat sign poses as discrete three-dimensional coordinates and directly fit them, which overlooks the relative positional relationships among joints. To this end, we provide a new perspective, constraining joint associations and gesture details by modeling the limb bones to improve the accuracy and naturalness of the generated poses. In this work, we propose a pioneering iconicity disentangled diffusion framework, termed Sign-IDD, specifically designed for SLP. Sign-IDD incorporates a novel Iconicity Disentanglement (ID) module to bridge the gap between relative positions among joints. The ID module disentangles the conventional 3D joint representation into a 4D bone representation, comprising the 3D spatial direction vector and 1D spatial distance vector between adjacent joints. Additionally, an Attribute Controllable Diffusion (ACD) module is introduced to further constrain joint associations, in which the attribute separation layer aims to separate the bone direction and length attributes, and the attribute control layer is designed to guide the pose generation by leveraging the above attributes. The ACD module utilizes the gloss embeddings as semantic conditions and finally generates sign poses from noise embeddings. Extensive experiments on PHOENIX14T and USTC-CSL datasets validate the effectiveness of our method. The code is available at: https://github.com/NaVi-start/Sign-IDD.
Abstract:The Audio-Visual Video Parsing task aims to recognize and temporally localize all events occurring in either the audio or visual stream, or both. Capturing accurate event semantics for each audio/visual segment is vital. Prior works directly utilize the extracted holistic audio and visual features for intra- and cross-modal temporal interactions. However, each segment may contain multiple events, resulting in semantically mixed holistic features that can lead to semantic interference during intra- or cross-modal interactions: the event semantics of one segment may incorporate semantics of unrelated events from other segments. To address this issue, our method begins with a Class-Aware Feature Decoupling (CAFD) module, which explicitly decouples the semantically mixed features into distinct class-wise features, including multiple event-specific features and a dedicated background feature. The decoupled class-wise features enable our model to selectively aggregate useful semantics for each segment from clearly matched classes contained in other segments, preventing semantic interference from irrelevant classes. Specifically, we further design a Fine-Grained Semantic Enhancement module for encoding intra- and cross-modal relations. It comprises a Segment-wise Event Co-occurrence Modeling (SECM) block and a Local-Global Semantic Fusion (LGSF) block. The SECM exploits inter-class dependencies of concurrent events within the same timestamp with the aid of a new event co-occurrence loss. The LGSF further enhances the event semantics of each segment by incorporating relevant semantics from more informative global video features. Extensive experiments validate the effectiveness of the proposed modules and loss functions, resulting in a new state-of-the-art parsing performance.
Abstract:We present ASAP, a new framework for detecting and grounding multi-modal media manipulation (DGM4).Upon thorough examination, we observe that accurate fine-grained cross-modal semantic alignment between the image and text is vital for accurately manipulation detection and grounding. While existing DGM4 methods pay rare attention to the cross-modal alignment, hampering the accuracy of manipulation detecting to step further. To remedy this issue, this work targets to advance the semantic alignment learning to promote this task. Particularly, we utilize the off-the-shelf Multimodal Large-Language Models (MLLMs) and Large Language Models (LLMs) to construct paired image-text pairs, especially for the manipulated instances. Subsequently, a cross-modal alignment learning is performed to enhance the semantic alignment. Besides the explicit auxiliary clues, we further design a Manipulation-Guided Cross Attention (MGCA) to provide implicit guidance for augmenting the manipulation perceiving. With the grounding truth available during training, MGCA encourages the model to concentrate more on manipulated components while downplaying normal ones, enhancing the model's ability to capture manipulations. Extensive experiments are conducted on the DGM4 dataset, the results demonstrate that our model can surpass the comparison method with a clear margin.
Abstract:In the field of audio-visual learning, most research tasks focus exclusively on short videos. This paper focuses on the more practical Dense Audio-Visual Event Localization (DAVEL) task, advancing audio-visual scene understanding for longer, {untrimmed} videos. This task seeks to identify and temporally pinpoint all events simultaneously occurring in both audio and visual streams. Typically, each video encompasses dense events of multiple classes, which may overlap on the timeline, each exhibiting varied durations. Given these challenges, effectively exploiting the audio-visual relations and the temporal features encoded at various granularities becomes crucial. To address these challenges, we introduce a novel \ul{CC}Net, comprising two core modules: the Cross-Modal Consistency \ul{C}ollaboration (CMCC) and the Multi-Temporal Granularity \ul{C}ollaboration (MTGC). Specifically, the CMCC module contains two branches: a cross-modal interaction branch and a temporal consistency-gated branch. The former branch facilitates the aggregation of consistent event semantics across modalities through the encoding of audio-visual relations, while the latter branch guides one modality's focus to pivotal event-relevant temporal areas as discerned in the other modality. The MTGC module includes a coarse-to-fine collaboration block and a fine-to-coarse collaboration block, providing bidirectional support among coarse- and fine-grained temporal features. Extensive experiments on the UnAV-100 dataset validate our module design, resulting in a new state-of-the-art performance in dense audio-visual event localization. The code is available at \url{https://github.com/zzhhfut/CCNet-AAAI2025}.
Abstract:Answering questions related to audio-visual scenes, i.e., the AVQA task, is becoming increasingly popular. A critical challenge is accurately identifying and tracking sounding objects related to the question along the timeline. In this paper, we present a new Patch-level Sounding Object Tracking (PSOT) method. It begins with a Motion-driven Key Patch Tracking (M-KPT) module, which relies on visual motion information to identify salient visual patches with significant movements that are more likely to relate to sounding objects and questions. We measure the patch-wise motion intensity map between neighboring video frames and utilize it to construct and guide a motion-driven graph network. Meanwhile, we design a Sound-driven KPT (S-KPT) module to explicitly track sounding patches. This module also involves a graph network, with the adjacency matrix regularized by the audio-visual correspondence map. The M-KPT and S-KPT modules are performed in parallel for each temporal segment, allowing balanced tracking of salient and sounding objects. Based on the tracked patches, we further propose a Question-driven KPT (Q-KPT) module to retain patches highly relevant to the question, ensuring the model focuses on the most informative clues. The audio-visual-question features are updated during the processing of these modules, which are then aggregated for final answer prediction. Extensive experiments on standard datasets demonstrate the effectiveness of our method, achieving competitive performance even compared to recent large-scale pretraining-based approaches.
Abstract:Score-based Generative Models (SGMs) have demonstrated remarkable generalization abilities, e.g. generating unseen, but natural data. However, the greater the generalization power, the more likely the unintended generalization, and the more dangerous the abuse. Research on moderated generalization in SGMs remains limited. To fill this gap, we first examine the current 'gold standard' in Machine Unlearning (MU), i.e., re-training the model after removing the undesirable training data, and find it does not work in SGMs. Further analysis of score functions reveals that the MU 'gold standard' does not alter the original score function, which explains its ineffectiveness. Based on this insight, we propose the first Moderated Score-based Generative Model (MSGM), which introduces a novel score adjustment strategy that redirects the score function away from undesirable data during the continuous-time stochastic differential equation process. Extensive experimental results demonstrate that MSGM significantly reduces the likelihood of generating undesirable content while preserving high visual quality for normal image generation. Albeit designed for SGMs, MSGM is a general and flexible MU framework that is compatible with diverse diffusion architectures (SGM and DDPM) and training strategies (re-training and fine-tuning), and enables zero-shot transfer of the pre-trained models to downstream tasks, e.g. image inpainting and reconstruction. The code will be shared upon acceptance.
Abstract:Repetitive Action Counting (RAC) aims to count the number of repetitive actions occurring in videos. In the real world, repetitive actions have great diversity and bring numerous challenges (e.g., viewpoint changes, non-uniform periods, and action interruptions). Existing methods based on the temporal self-similarity matrix (TSSM) for RAC are trapped in the bottleneck of insufficient capturing action periods when applied to complicated daily videos. To tackle this issue, we propose a novel method named Hybrid Temporal Relation Modeling Network (HTRM-Net) to build diverse TSSM for RAC. The HTRM-Net mainly consists of three key components: bi-modal temporal self-similarity matrix modeling, random matrix dropping, and local temporal context modeling. Specifically, we construct temporal self-similarity matrices by bi-modal (self-attention and dual-softmax) operations, yielding diverse matrix representations from the combination of row-wise and column-wise correlations. To further enhance matrix representations, we propose incorporating a random matrix dropping module to guide channel-wise learning of the matrix explicitly. After that, we inject the local temporal context of video frames and the learned matrix into temporal correlation modeling, which can make the model robust enough to cope with error-prone situations, such as action interruption. Finally, a multi-scale matrix fusion module is designed to aggregate temporal correlations adaptively in multi-scale matrices. Extensive experiments across intra- and cross-datasets demonstrate that the proposed method not only outperforms current state-of-the-art methods but also exhibits robust capabilities in accurately counting repetitive actions in unseen action categories. Notably, our method surpasses the classical TransRAC method by 20.04\% in MAE and 22.76\% in OBO.