Abstract:In this article, an encoder was trained to obtain the inner structure of the original data by obtain a differential equations. A decoder was trained to resample the original data domain, to generate new data that obey the differential structure of the original data using the physics-informed neural network.
Abstract:Multi-instance Repetitive Action Counting (MRAC) aims to estimate the number of repetitive actions performed by multiple instances in untrimmed videos, commonly found in human-centric domains like sports and exercise. In this paper, we propose MultiCounter, a fully end-to-end deep learning framework that enables simultaneous detection, tracking, and counting of repetitive actions of multiple human instances. Specifically, MultiCounter incorporates two novel modules: 1) mixed spatiotemporal interaction for efficient context correlation across consecutive frames, and 2) task-specific heads for accurate perception of periodic boundaries and generalization for action-agnostic human instances. We train MultiCounter on a synthetic dataset called MultiRep generated from annotated real-world videos. Experiments on the MultiRep dataset validate the fundamental challenge of MRAC tasks and showcase the superiority of our proposed model. Compared to ByteTrack+RepNet, a solution that combines an advanced tracker with a single repetition counter, MultiCounter substantially improves Period-mAP by 41.0%, reduces AvgMAE by 58.6%, and increases AvgOBO 1.48 times. This sets a new benchmark in the field of MRAC. Moreover, MultiCounter runs in real-time on a commodity GPU server and is insensitive to the number of human instances in a video.
Abstract:Large vision-language models (LVLMs) have shown promising performance on a variety of vision-language tasks. However, they remain susceptible to hallucinations, generating outputs misaligned with visual content or instructions. While various mitigation strategies have been proposed, they often neglect a key contributor to hallucinations: lack of fine-grained reasoning supervision during training. Without intermediate reasoning steps, models may establish superficial shortcuts between instructions and responses, failing to internalize the inherent reasoning logic. To address this challenge, we propose reflective instruction tuning, which integrates rationale learning into visual instruction tuning. Unlike previous methods that learning from responses only, our approach entails the model predicting rationales justifying why responses are correct or incorrect. This fosters a deeper engagement with the fine-grained reasoning underlying each response, thus enhancing the model's reasoning proficiency. To facilitate this approach, we propose REVERIE, the first large-scale instruction-tuning dataset with ReflEctiVE RatIonalE annotations. REVERIE comprises 115k machine-generated reasoning instructions, each meticulously annotated with a corresponding pair of correct and confusing responses, alongside comprehensive rationales elucidating the justification behind the correctness or erroneousness of each response. Experimental results on multiple LVLM benchmarks reveal that reflective instruction tuning with the REVERIE dataset yields noticeable performance gain over the baseline model, demonstrating the effectiveness of reflecting from the rationales. Project page is at https://zjr2000.github.io/projects/reverie.
Abstract:We present Ego3DPose, a highly accurate binocular egocentric 3D pose reconstruction system. The binocular egocentric setup offers practicality and usefulness in various applications, however, it remains largely under-explored. It has been suffering from low pose estimation accuracy due to viewing distortion, severe self-occlusion, and limited field-of-view of the joints in egocentric 2D images. Here, we notice that two important 3D cues, stereo correspondences, and perspective, contained in the egocentric binocular input are neglected. Current methods heavily rely on 2D image features, implicitly learning 3D information, which introduces biases towards commonly observed motions and leads to low overall accuracy. We observe that they not only fail in challenging occlusion cases but also in estimating visible joint positions. To address these challenges, we propose two novel approaches. First, we design a two-path network architecture with a path that estimates pose per limb independently with its binocular heatmaps. Without full-body information provided, it alleviates bias toward trained full-body distribution. Second, we leverage the egocentric view of body limbs, which exhibits strong perspective variance (e.g., a significantly large-size hand when it is close to the camera). We propose a new perspective-aware representation using trigonometry, enabling the network to estimate the 3D orientation of limbs. Finally, we develop an end-to-end pose reconstruction network that synergizes both techniques. Our comprehensive evaluations demonstrate that Ego3DPose outperforms state-of-the-art models by a pose estimation error (i.e., MPJPE) reduction of 23.1% in the UnrealEgo dataset. Our qualitative results highlight the superiority of our approach across a range of scenarios and challenges.
Abstract:Image-to-text generation aims to describe images using natural language. Recently, zero-shot image captioning based on pre-trained vision-language models (VLMs) and large language models (LLMs) has made significant progress. However, we have observed and empirically demonstrated that these methods are susceptible to modality bias induced by LLMs and tend to generate descriptions containing objects (entities) that do not actually exist in the image but frequently appear during training (i.e., object hallucination). In this paper, we propose ViECap, a transferable decoding model that leverages entity-aware decoding to generate descriptions in both seen and unseen scenarios. ViECap incorporates entity-aware hard prompts to guide LLMs' attention toward the visual entities present in the image, enabling coherent caption generation across diverse scenes. With entity-aware hard prompts, ViECap is capable of maintaining performance when transferring from in-domain to out-of-domain scenarios. Extensive experiments demonstrate that ViECap sets a new state-of-the-art cross-domain (transferable) captioning and performs competitively in-domain captioning compared to previous VLMs-based zero-shot methods. Our code is available at: https://github.com/FeiElysia/ViECap
Abstract:Our winning entry for the CVPR 2023 Generic Event Boundary Captioning (GEBC) competition is detailed in this paper. Unlike conventional video captioning tasks, GEBC demands that the captioning model possess an understanding of immediate changes in status around the designated video boundary, making it a difficult task. This paper proposes an effective model LLMVA-GEBC (Large Language Model with Video Adapter for Generic Event Boundary Captioning): (1) We utilize a pretrained LLM for generating human-like captions with high quality. (2) To adapt the model to the GEBC task, we take the video Q-former as an adapter and train it with the frozen visual feature extractors and LLM. Our proposed method achieved a 76.14 score on the test set and won the first place in the challenge. Our code is available at https://github.com/zjr2000/LLMVA-GEBC .
Abstract:Controllable image captioning is an emerging multimodal topic that aims to describe the image with natural language following human purpose, $\textit{e.g.}$, looking at the specified regions or telling in a particular text style. State-of-the-art methods are trained on annotated pairs of input controls and output captions. However, the scarcity of such well-annotated multimodal data largely limits their usability and scalability for interactive AI systems. Leveraging unimodal instruction-following foundation models is a promising alternative that benefits from broader sources of data. In this paper, we present Caption AnyThing (CAT), a foundation model augmented image captioning framework supporting a wide range of multimodel controls: 1) visual controls, including points, boxes, and trajectories; 2) language controls, such as sentiment, length, language, and factuality. Powered by Segment Anything Model (SAM) and ChatGPT, we unify the visual and language prompts into a modularized framework, enabling the flexible combination between different controls. Extensive case studies demonstrate the user intention alignment capabilities of our framework, shedding light on effective user interaction modeling in vision-language applications. Our code is publicly available at https://github.com/ttengwang/Caption-Anything.
Abstract:Joint video-language learning has received increasing attention in recent years. However, existing works mainly focus on single or multiple trimmed video clips (events), which makes human-annotated event boundaries necessary during inference. To break away from the ties, we propose a grounded vision-language learning framework for untrimmed videos, which automatically detects informative events and effectively excavates the alignments between multi-sentence descriptions and corresponding event segments. Instead of coarse-level video-language alignments, we present two dual pretext tasks to encourage fine-grained segment-level alignments, i.e., text-to-event grounding (TEG) and event-to-text generation (ETG). TEG learns to adaptively ground the possible event proposals given a set of sentences by estimating the cross-modal distance in a joint semantic space. Meanwhile, ETG aims to reconstruct (generate) the matched texts given event proposals, encouraging the event representation to retain meaningful semantic information. To encourage accurate label assignment between the event set and the text set, we propose a novel semantic-aware cost to mitigate the sub-optimal matching results caused by ambiguous boundary annotations. Our framework is easily extensible to tasks covering visually-grounded language understanding and generation. We achieve state-of-the-art dense video captioning performance on ActivityNet Captions, YouCook2 and YouMakeup, and competitive performance on several other language generation and understanding tasks. Our method also achieved 1st place in both the MTVG and MDVC tasks of the PIC 4th Challenge.
Abstract:Generic Event Boundary Captioning (GEBC) aims to generate three sentences describing the status change for a given time boundary. Previous methods only process the information of a single boundary at a time, which lacks utilization of video context information. To tackle this issue, we design a model that directly takes the whole video as input and generates captions for all boundaries parallelly. The model could learn the context information for each time boundary by modeling the boundary-boundary interactions. Experiments demonstrate the effectiveness of context information. The proposed method achieved a 72.84 score on the test set, and we reached the $2^{nd}$ place in this challenge. Our code is available at: \url{https://github.com/zjr2000/Context-GEBC}