Abstract:We present MobiFuse, a high-precision depth perception system on mobile devices that combines dual RGB and Time-of-Flight (ToF) cameras. To achieve this, we leverage physical principles from various environmental factors to propose the Depth Error Indication (DEI) modality, characterizing the depth error of ToF and stereo-matching. Furthermore, we employ a progressive fusion strategy, merging geometric features from ToF and stereo depth maps with depth error features from the DEI modality to create precise depth maps. Additionally, we create a new ToF-Stereo depth dataset, RealToF, to train and validate our model. Our experiments demonstrate that MobiFuse excels over baselines by significantly reducing depth measurement errors by up to 77.7%. It also showcases strong generalization across diverse datasets and proves effectiveness in two downstream tasks: 3D reconstruction and 3D segmentation. The demo video of MobiFuse in real-life scenarios is available at the de-identified YouTube link(https://youtu.be/jy-Sp7T1LVs).
Abstract:Running LLMs on end devices has garnered significant attention recently due to their advantages in privacy preservation. With the advent of lightweight LLM models and specially designed GPUs, on-device LLM inference has achieved the necessary accuracy and performance metrics. However, we have identified that LLM inference on GPUs can leak privacy-sensitive intermediate information, specifically the KV pairs. An attacker could exploit these KV pairs to reconstruct the entire user conversation, leading to significant vulnerabilities. Existing solutions, such as Fully Homomorphic Encryption (FHE) and Trusted Execution Environments (TEE), are either too computation-intensive or resource-limited. To address these issues, we designed KV-Shield, which operates in two phases. In the initialization phase, it permutes the weight matrices so that all KV pairs are correspondingly permuted. During the runtime phase, the attention vector is inversely permuted to ensure the correctness of the layer output. All permutation-related operations are executed within the TEE, ensuring that insecure GPUs cannot access the original KV pairs, thus preventing conversation reconstruction. Finally, we theoretically analyze the correctness of KV-Shield, along with its advantages and overhead.