Abstract:In recent years, terrestrial laser scanning technology has been widely used to collect tree point cloud data, aiding in measurements of diameter at breast height, biomass, and other forestry survey data. Since a single scan from terrestrial laser systems captures data from only one angle, multiple scans must be registered and fused to obtain complete tree point cloud data. This paper proposes a marker-free automatic registration method for single-tree point clouds based on similar tetrahedras. First, two point clouds from two scans of the same tree are used to generate tree skeletons, and key point sets are constructed from these skeletons. Tetrahedra are then filtered and matched according to similarity principles, with the vertices of these two matched tetrahedras selected as matching point pairs, thus completing the coarse registration of the point clouds from the two scans. Subsequently, the ICP method is applied to the coarse-registered leaf point clouds to obtain fine registration parameters, completing the precise registration of the two tree point clouds. Experiments were conducted using terrestrial laser scanning data from eight trees, each from different species and with varying shapes. The proposed method was evaluated using RMSE and Hausdorff distance, compared against the traditional ICP and NDT methods. The experimental results demonstrate that the proposed method significantly outperforms both ICP and NDT in registration accuracy, achieving speeds up to 593 times and 113 times faster than ICP and NDT, respectively. In summary, the proposed method shows good robustness in single-tree point cloud registration, with significant advantages in accuracy and speed compared to traditional ICP and NDT methods, indicating excellent application prospects in practical registration scenarios.
Abstract:Wood-leaf classification is an essential and fundamental prerequisite in the analysis and estimation of forest attributes from terrestrial laser scanning (TLS) point clouds,including critical measurements such as diameter at breast height(DBH),above-ground biomass(AGB),wood volume.To address this,we introduce the Wood-Leaf Classification Network(WLC-Net),a deep learning model derived from PointNet++,designed to differentiate between wood and leaf points within tree point clouds.WLC-Net enhances classification accuracy,completeness,and speed by incorporating linearity as an inherent feature,refining the input-output framework,and optimizing the centroid sampling technique.WLC-Net was trained and assessed using three distinct tree species datasets,comprising a total of 102 individual tree point clouds:21 Chinese ash trees,21 willow trees,and 60 tropical trees.For comparative evaluation,five alternative methods,including PointNet++,DGCNN,Krishna Moorthy's method,LeWoS, and Sun's method,were also applied to these datasets.The classification accuracy of all six methods was quantified using three metrics:overall accuracy(OA),mean Intersection over Union(mIoU),and F1-score.Across all three datasets,WLC-Net demonstrated superior performance, achieving OA scores of 0.9778, 0.9712, and 0.9508;mIoU scores of 0.9761, 0.9693,and 0.9141;and F1-scores of 0.8628, 0.7938,and 0.9019,respectively.The time costs of WLC-Net were also recorded to evaluate the efficiency.The average processing time was 102.74s per million points for WLC-Net.In terms of visual inspect,accuracy evaluation and efficiency evaluation,the results suggest that WLC-Net presents a promising approach for wood-leaf classification,distinguished by its high accuracy. In addition,WLC-Net also exhibits strong applicability across various tree point clouds and holds promise for further optimization.
Abstract:Recent works in self-supervised video prediction have mainly focused on passive forecasting and low-level action-conditional prediction, which sidesteps the problem of semantic learning. We introduce the task of semantic action-conditional video prediction, which can be regarded as an inverse problem of action recognition. The challenge of this new task primarily lies in how to effectively inform the model of semantic action information. To bridge vision and language, we utilize the idea of capsule and propose a novel video prediction model Action Concept Grounding Network (AGCN). Our method is evaluated on two newly designed synthetic datasets, CLEVR-Building-Blocks and Sapien-Kitchen, and experiments show that given different action labels, our ACGN can correctly condition on instructions and generate corresponding future frames without need of bounding boxes. We further demonstrate our trained model can make out-of-distribution predictions for concurrent actions, be quickly adapted to new object categories and exploit its learnt features for object detection. Additional visualizations can be found at https://iclr-acgn.github.io/ACGN/.