University of Toronto
Abstract:This paper explores the design of beamforming codebooks for the base station (BS) and for the reconfigurable intelligent surfaces (RISs) in an active sensing scheme for uplink localization, in which the mobile user transmits a sequence of pilots to the BS through reflection at the RISs, and the BS and the RISs are adaptively configured by carefully choosing BS beamforming codeword and RIS codewords from their respective codebooks in a sequential manner to progressively focus onto the user. Most existing codebook designs for RIS are not tailored for active sensing, by which we mean the choice of the next codeword should depend on the measurements made so far, and the sequence of codewords should dynamically focus reflection toward the user. Moreover, most existing codeword selection methods rely on exhaustive search in beam training to identify the codeword with the highest signal-to-noise ratio (SNR), thus incurring substantial pilot overhead as the size of the codebook scales. This paper proposes learning-based approaches for codebook construction and for codeword selection for active sensing. The proposed learning approach aims to locate a target in the service area by recursively selecting a sequence of BS beamforming codewords and RIS codewords from the respective codebooks as more measurements become available without exhaustive beam training. The codebook design and the codeword selection fuse key ideas from the vector quantized-variational autoencoder (VQ-VAE) and the long short-term memory (LSTM) network to learn respectively the discrete function space of the codebook and the temporal dependencies between measurements.
Abstract:This paper studies an uplink dual-functional sensing and communication system aided by a reconfigurable intelligent surface (RIS), whose reflection pattern is optimally configured to trade-off sensing and communication functionalities. Specifically, the Bayesian Cram\'er-Rao lower bound (BCRLB) for estimating the azimuth angle of a sensing user is minimized while ensuring the signal-to-interference-plus-noise ratio constraints for communication users. We show that this problem can be formulated as a novel fractionally constrained fractional programming (FCFP) problem. To deal with this highly nontrivial problem, we extend a quadratic transform technique, originally proposed to handle optimization problems containing ratio structures only in objectives, to the scenario where the constraints also contain ratio structures. First, we consider the case where the fading coefficient is known. Using the quadratic transform, the FCFP problem is turned into a sequence of subproblems that are convex except for the constant-modulus constraints which can be tackled using a penalty-based method. To further reduce the computational complexity, we leverage the constant-modulus conditions and propose a novel linear transform. This new transform enables the FCFP problem to be turned into a sequence of linear programming (LP) subproblems, which can be solved with linear complexity in the dimension of reflecting elements. Then, we consider the case where the fading coefficient is unknown. A modified BCRLB is used to make the problem more tractable, and the proposed quadratic transform-based algorithm is used to solve the problem. Finally, numerical results unveil nontrivial and effective reflection patterns that the RIS can be configured to generate to facilitate both functionalities.
Abstract:Recent Multimodal Large Language Models(MLLMs) often use a large number of visual tokens to compensate their visual shortcoming, leading to excessive computation and obvious visual redundancy. In this paper, we investigate what kind of visual tokens are needed for MLLMs, and reveal that both foreground and background tokens are critical for MLLMs given the varying difficulties of examples. Based on this observation, we propose a graph-based method towards training-free visual token pruning, termed G-Prune.In particular, G-Prune regards visual tokens as nodes, and construct their connections based on their semantic similarities. Afterwards, the information flow is propagated via weighted links, and the most important tokens after iterations are kept for MLLMs, which can be front or background.To validate G-Prune, we apply it to a recent MLLM called LLaVA-NeXT, and conduct extensive experiments on a set of benchmarks.The experiment results show that G-Prune can greatly reduce computation overhead while retaining high performance on both coarse- and fine-grained tasks. For instance, G-Prune can reduce 63.57\% FLOPs of LLaVA-NeXT on VQA2.0 and TextVQA with only 0.95\% and 2.34\% accuracy drops, respectively.
Abstract:Large language models (LLMs) have shown remarkable capabilities in code generation. However, the effects of hallucinations (e.g., output noise) make it particularly challenging for LLMs to generate high-quality code in one pass. In this work, we propose a simple and effective \textbf{u}ncertainty-aware \textbf{s}elective \textbf{c}ontrastive \textbf{d}ecoding ($\mathbb{USCD}$) mechanism to improve the quality of one-pass code generation in LLMs and reduce the impact of output noise. To be specific, we first elaborately designed a negative prompt (namely lame prompt) to output noise by removing input-output examples from the standard few-shot prompt. Our preliminary study shows that the Jensen-Shannon divergence (JS divergence) between token distribution uncertainty and the output noise is relatively low (approximately $0.25$), indicating their high relevance. Then, we selectively eliminate output noise induced by lame prompts based on the uncertainty of the prediction distribution from the standard prompt. Notably, our proposed plug-and-play mechanism is an inference-only method, enjoying appealing flexibility. Extensive experiments on widely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs (i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b), demonstrate that our proposed USCD significantly improves one-pass code generation, with an average \textit{pass@$1$} scores increase of 16.59\%. We will release code and data on GitHub.
Abstract:Incremental learning is nontrivial due to severe catastrophic forgetting. Although storing a small amount of data on old tasks during incremental learning is a feasible solution, current strategies still do not 1) adequately address the class bias problem, and 2) alleviate the mutual interference between new and old tasks, and 3) consider the problem of class bias within tasks. This motivates us to propose a joint input and output coordination (JIOC) mechanism to address these issues. This mechanism assigns different weights to different categories of data according to the gradient of the output score, and uses knowledge distillation (KD) to reduce the mutual interference between the outputs of old and new tasks. The proposed mechanism is general and flexible, and can be incorporated into different incremental learning approaches that use memory storage. Extensive experiments show that our mechanism can significantly improve their performance.
Abstract:This paper investigates an uplink pilot-based wireless indoor localization problem in a multipath environment for a single-input single-output (SISO) narrowband communication system aided by reconfigurable intelligent surface (RIS). The indoor localization problem is challenging because the uplink channel consists of multiple overlapping propagation paths with varying amplitudes and phases, which are not easy to differentiate. This paper proposes the use of RIS capable of adaptively changing its reflection pattern to sense such a multiplepath environment. Toward this end, we train a long-short-termmemory (LSTM) based controller to perform adaptive sequential reconfigurations of the RIS over multiple stages and propose to group multiple pilots as input in each stage. Information from the multiple paths is captured by training the LSTM to generate multiple RIS configurations to align to the different paths within each stage. Experimental results show that the proposed approach is effective in significantly reducing training complexity while maintaining localization performance at fixed number of pilots.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
Abstract:This paper studies a beam tracking problem in which an access point (AP), in collaboration with a reconfigurable intelligent surface (RIS), dynamically adjusts its downlink beamformers and the reflection pattern at the RIS in order to maintain reliable communications with multiple mobile user equipments (UEs). Specifically, the mobile UEs send uplink pilots to the AP periodically during the channel sensing intervals, the AP then adaptively configures the beamformers and the RIS reflection coefficients for subsequent data transmission based on the received pilots. This is an active sensing problem, because channel sensing involves configuring the RIS coefficients during the pilot stage and the optimal sensing strategy should exploit the trajectory of channel state information (CSI) from previously received pilots. Analytical solution to such an active sensing problem is very challenging. In this paper, we propose a deep learning framework utilizing a recurrent neural network (RNN) to automatically summarize the time-varying CSI obtained from the periodically received pilots into state vectors. These state vectors are then mapped to the AP beamformers and RIS reflection coefficients for subsequent downlink data transmissions, as well as the RIS reflection coefficients for the next round of uplink channel sensing. The mappings from the state vectors to the downlink beamformers and the RIS reflection coefficients for both channel sensing and downlink data transmission are performed using graph neural networks (GNNs) to account for the interference among the UEs. Simulations demonstrate significant and interpretable performance improvement of the proposed approach over the existing data-driven methods with nonadaptive channel sensing schemes.
Abstract:Domain generalization faces challenges due to the distribution shift between training and testing sets, and the presence of unseen target domains. Common solutions include domain alignment, meta-learning, data augmentation, or ensemble learning, all of which rely on domain labels or domain adversarial techniques. In this paper, we propose a Dual-Stream Separation and Reconstruction Network, dubbed DSDRNet. It is a disentanglement-reconstruction approach that integrates features of both inter-instance and intra-instance through dual-stream fusion. The method introduces novel supervised signals by combining inter-instance semantic distance and intra-instance similarity. Incorporating Adaptive Instance Normalization (AdaIN) into a two-stage cyclic reconstruction process enhances self-disentangled reconstruction signals to facilitate model convergence. Extensive experiments on four benchmark datasets demonstrate that DSDRNet outperforms other popular methods in terms of domain generalization capabilities.