University of Toronto
Abstract:Large language models (LLMs) have shown remarkable capabilities in code generation. However, the effects of hallucinations (e.g., output noise) make it particularly challenging for LLMs to generate high-quality code in one pass. In this work, we propose a simple and effective \textbf{u}ncertainty-aware \textbf{s}elective \textbf{c}ontrastive \textbf{d}ecoding ($\mathbb{USCD}$) mechanism to improve the quality of one-pass code generation in LLMs and reduce the impact of output noise. To be specific, we first elaborately designed a negative prompt (namely lame prompt) to output noise by removing input-output examples from the standard few-shot prompt. Our preliminary study shows that the Jensen-Shannon divergence (JS divergence) between token distribution uncertainty and the output noise is relatively low (approximately $0.25$), indicating their high relevance. Then, we selectively eliminate output noise induced by lame prompts based on the uncertainty of the prediction distribution from the standard prompt. Notably, our proposed plug-and-play mechanism is an inference-only method, enjoying appealing flexibility. Extensive experiments on widely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs (i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b), demonstrate that our proposed USCD significantly improves one-pass code generation, with an average \textit{pass@$1$} scores increase of 16.59\%. We will release code and data on GitHub.
Abstract:Incremental learning is nontrivial due to severe catastrophic forgetting. Although storing a small amount of data on old tasks during incremental learning is a feasible solution, current strategies still do not 1) adequately address the class bias problem, and 2) alleviate the mutual interference between new and old tasks, and 3) consider the problem of class bias within tasks. This motivates us to propose a joint input and output coordination (JIOC) mechanism to address these issues. This mechanism assigns different weights to different categories of data according to the gradient of the output score, and uses knowledge distillation (KD) to reduce the mutual interference between the outputs of old and new tasks. The proposed mechanism is general and flexible, and can be incorporated into different incremental learning approaches that use memory storage. Extensive experiments show that our mechanism can significantly improve their performance.
Abstract:This paper investigates an uplink pilot-based wireless indoor localization problem in a multipath environment for a single-input single-output (SISO) narrowband communication system aided by reconfigurable intelligent surface (RIS). The indoor localization problem is challenging because the uplink channel consists of multiple overlapping propagation paths with varying amplitudes and phases, which are not easy to differentiate. This paper proposes the use of RIS capable of adaptively changing its reflection pattern to sense such a multiplepath environment. Toward this end, we train a long-short-termmemory (LSTM) based controller to perform adaptive sequential reconfigurations of the RIS over multiple stages and propose to group multiple pilots as input in each stage. Information from the multiple paths is captured by training the LSTM to generate multiple RIS configurations to align to the different paths within each stage. Experimental results show that the proposed approach is effective in significantly reducing training complexity while maintaining localization performance at fixed number of pilots.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
Abstract:This paper studies a beam tracking problem in which an access point (AP), in collaboration with a reconfigurable intelligent surface (RIS), dynamically adjusts its downlink beamformers and the reflection pattern at the RIS in order to maintain reliable communications with multiple mobile user equipments (UEs). Specifically, the mobile UEs send uplink pilots to the AP periodically during the channel sensing intervals, the AP then adaptively configures the beamformers and the RIS reflection coefficients for subsequent data transmission based on the received pilots. This is an active sensing problem, because channel sensing involves configuring the RIS coefficients during the pilot stage and the optimal sensing strategy should exploit the trajectory of channel state information (CSI) from previously received pilots. Analytical solution to such an active sensing problem is very challenging. In this paper, we propose a deep learning framework utilizing a recurrent neural network (RNN) to automatically summarize the time-varying CSI obtained from the periodically received pilots into state vectors. These state vectors are then mapped to the AP beamformers and RIS reflection coefficients for subsequent downlink data transmissions, as well as the RIS reflection coefficients for the next round of uplink channel sensing. The mappings from the state vectors to the downlink beamformers and the RIS reflection coefficients for both channel sensing and downlink data transmission are performed using graph neural networks (GNNs) to account for the interference among the UEs. Simulations demonstrate significant and interpretable performance improvement of the proposed approach over the existing data-driven methods with nonadaptive channel sensing schemes.
Abstract:Domain generalization faces challenges due to the distribution shift between training and testing sets, and the presence of unseen target domains. Common solutions include domain alignment, meta-learning, data augmentation, or ensemble learning, all of which rely on domain labels or domain adversarial techniques. In this paper, we propose a Dual-Stream Separation and Reconstruction Network, dubbed DSDRNet. It is a disentanglement-reconstruction approach that integrates features of both inter-instance and intra-instance through dual-stream fusion. The method introduces novel supervised signals by combining inter-instance semantic distance and intra-instance similarity. Incorporating Adaptive Instance Normalization (AdaIN) into a two-stage cyclic reconstruction process enhances self-disentangled reconstruction signals to facilitate model convergence. Extensive experiments on four benchmark datasets demonstrate that DSDRNet outperforms other popular methods in terms of domain generalization capabilities.
Abstract:Adapter-based parameter-efficient transfer learning has achieved exciting results in vision-language models. Traditional adapter methods often require training or fine-tuning, facing challenges such as insufficient samples or resource limitations. While some methods overcome the need for training by leveraging image modality cache and retrieval, they overlook the text modality's importance and cross-modal cues for the efficient adaptation of parameters in visual-language models. This work introduces a cross-modal parameter-efficient approach named XMAdapter. XMAdapter establishes cache models for both text and image modalities. It then leverages retrieval through visual-language bimodal information to gather clues for inference. By dynamically adjusting the affinity ratio, it achieves cross-modal fusion, decoupling different modal similarities to assess their respective contributions. Additionally, it explores hard samples based on differences in cross-modal affinity and enhances model performance through adaptive adjustment of sample learning intensity. Extensive experimental results on benchmark datasets demonstrate that XMAdapter outperforms previous adapter-based methods significantly regarding accuracy, generalization, and efficiency.
Abstract:Lip-reading is to utilize the visual information of the speaker's lip movements to recognize words and sentences. Existing event-based lip-reading solutions integrate different frame rate branches to learn spatio-temporal features of varying granularities. However, aggregating events into event frames inevitably leads to the loss of fine-grained temporal information within frames. To remedy this drawback, we propose a novel framework termed Multi-view Temporal Granularity aligned Aggregation (MTGA). Specifically, we first present a novel event representation method, namely time-segmented voxel graph list, where the most significant local voxels are temporally connected into a graph list. Then we design a spatio-temporal fusion module based on temporal granularity alignment, where the global spatial features extracted from event frames, together with the local relative spatial and temporal features contained in voxel graph list are effectively aligned and integrated. Finally, we design a temporal aggregation module that incorporates positional encoding, which enables the capture of local absolute spatial and global temporal information. Experiments demonstrate that our method outperforms both the event-based and video-based lip-reading counterparts. Our code will be publicly available.
Abstract:In most applications of utilizing neural networks for mathematical optimization, a dedicated model is trained for each specific optimization objective. However, in many scenarios, several distinct yet correlated objectives or tasks often need to be optimized on the same set of problem inputs. Instead of independently training a different neural network for each problem separately, it would be more efficient to exploit the correlations between these objectives and to train multiple neural network models with shared model parameters and feature representations. To achieve this, this paper first establishes the concept of common information: the shared knowledge required for solving the correlated tasks, then proposes a novel approach for model training by adding into the model an additional reconstruction stage associated with a new reconstruction loss. This loss is for reconstructing the common information starting from a selected hidden layer in the model. The proposed approach encourages the learned features to be general and transferable, and therefore can be readily used for efficient transfer learning. For numerical simulations, three applications are studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network power allocation, and the multiple-input-single-output network downlink beamforming and localization. Simulation results suggest that the proposed approach is highly efficient in data and model complexity, is resilient to over-fitting, and has competitive performances.