Abstract:The rapid development of vision language models (VLMs) demands rigorous and reliable evaluation. However, current visual question answering (VQA) benchmarks often depend on open-ended questions, making accurate evaluation difficult due to the variability in natural language responses. To address this, we introduce AutoConverter, an agentic framework that automatically converts these open-ended questions into multiple-choice format, enabling objective evaluation while reducing the costly question creation process. Our experiments demonstrate that AutoConverter can generate correct and challenging multiple-choice questions, with VLMs demonstrating consistently similar or lower accuracy on these questions compared to human-created ones. Using AutoConverter, we construct VMCBench, a benchmark created by transforming 20 existing VQA datasets into a unified multiple-choice format, totaling 9,018 questions. We comprehensively evaluate 33 state-of-the-art VLMs on VMCBench, setting a new standard for scalable, consistent, and reproducible VLM evaluation.
Abstract:Text watermarking for Large Language Models (LLMs) has made significant progress in detecting LLM outputs and preventing misuse. Current watermarking techniques offer high detectability, minimal impact on text quality, and robustness to text editing. However, current researches lack investigation into the imperceptibility of watermarking techniques in LLM services. This is crucial as LLM providers may not want to disclose the presence of watermarks in real-world scenarios, as it could reduce user willingness to use the service and make watermarks more vulnerable to attacks. This work is the first to investigate the imperceptibility of watermarked LLMs. We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts to the LLM. Our key motivation is that current watermarked LLMs expose consistent biases under the same watermark key, resulting in similar differences across prompts under different watermark keys. Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts, while Water-Probe demonstrates a minimal false positive rate for non-watermarked LLMs. Finally, we propose that the key to enhancing the imperceptibility of watermarked LLMs is to increase the randomness of watermark key selection. Based on this, we introduce the Water-Bag strategy, which significantly improves watermark imperceptibility by merging multiple watermark keys.
Abstract:There has been an increasing research interest in cross-age speaker verification~(CASV). However, existing speaker verification systems perform poorly in CASV due to the great individual differences in voice caused by aging. In this paper, we propose a disentangled representation learning framework for CASV based on mutual information~(MI) minimization. In our method, a backbone model is trained to disentangle the identity- and age-related embeddings from speaker information, and an MI estimator is trained to minimize the correlation between age- and identity-related embeddings via MI minimization, resulting in age-invariant speaker embeddings. Furthermore, by using the age gaps between positive and negative samples, we propose an aging-aware MI minimization loss function that allows the backbone model to focus more on the vocal changes with large age gaps. Experimental results show that the proposed method outperforms other methods on multiple Cross-Age test sets of Vox-CA.
Abstract:This study presents an innovative Zero-Shot any-to-any Singing Voice Conversion (SVC) method, leveraging a novel clustering-based phoneme representation to effectively separate content, timbre, and singing style. This approach enables precise voice characteristic manipulation. We discovered that datasets with fewer recordings per artist are more susceptible to timbre leakage. Extensive testing on over 10,000 hours of singing and user feedback revealed our model significantly improves sound quality and timbre accuracy, aligning with our objectives and advancing voice conversion technology. Furthermore, this research advances zero-shot SVC and sets the stage for future work on discrete speech representation, emphasizing the preservation of rhyme.
Abstract:Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.
Abstract:Instruction following is one of the fundamental capabilities of large language models (LLMs). As the ability of LLMs is constantly improving, they have been increasingly applied to deal with complex human instructions in real-world scenarios. Therefore, how to evaluate the ability of complex instruction-following of LLMs has become a critical research problem. Existing benchmarks mainly focus on modeling different types of constraints in human instructions while neglecting the composition of different constraints, which is an indispensable constituent in complex instructions. To this end, we propose ComplexBench, a benchmark for comprehensively evaluating the ability of LLMs to follow complex instructions composed of multiple constraints. We propose a hierarchical taxonomy for complex instructions, including 4 constraint types, 19 constraint dimensions, and 4 composition types, and manually collect a high-quality dataset accordingly. To make the evaluation reliable, we augment LLM-based evaluators with rules to effectively verify whether generated texts can satisfy each constraint and composition. Furthermore, we obtain the final evaluation score based on the dependency structure determined by different composition types. ComplexBench identifies significant deficiencies in existing LLMs when dealing with complex instructions with multiple constraints composition.
Abstract:Referring image segmentation (RIS) aims to locate the particular region corresponding to the language expression. Existing methods incorporate features from different modalities in a \emph{bottom-up} manner. This design may get some unnecessary image-text pairs, which leads to an inaccurate segmentation mask. In this paper, we propose a referring image segmentation method called HARIS, which introduces the Human-Like Attention mechanism and uses the parameter-efficient fine-tuning (PEFT) framework. To be specific, the Human-Like Attention gets a \emph{feedback} signal from multi-modal features, which makes the network center on the specific objects and discard the irrelevant image-text pairs. Besides, we introduce the PEFT framework to preserve the zero-shot ability of pre-trained encoders. Extensive experiments on three widely used RIS benchmarks and the PhraseCut dataset demonstrate that our method achieves state-of-the-art performance and great zero-shot ability.
Abstract:Recently, diffusion-based purification (DBP) has emerged as a promising approach for defending against adversarial attacks. However, previous studies have used questionable methods to evaluate the robustness of DBP models, their explanations of DBP robustness also lack experimental support. We re-examine DBP robustness using precise gradient, and discuss the impact of stochasticity on DBP robustness. To better explain DBP robustness, we assess DBP robustness under a novel attack setting, Deterministic White-box, and pinpoint stochasticity as the main factor in DBP robustness. Our results suggest that DBP models rely on stochasticity to evade the most effective attack direction, rather than directly countering adversarial perturbations. To improve the robustness of DBP models, we propose Adversarial Denoising Diffusion Training (ADDT). This technique uses Classifier-Guided Perturbation Optimization (CGPO) to generate adversarial perturbation through guidance from a pre-trained classifier, and uses Rank-Based Gaussian Mapping (RBGM) to convert adversarial pertubation into a normal Gaussian distribution. Empirical results show that ADDT improves the robustness of DBP models. Further experiments confirm that ADDT equips DBP models with the ability to directly counter adversarial perturbations.
Abstract:Diffusion models have achieved remarkable success in generating high quality image and video data. More recently, they have also been used for image compression with high perceptual quality. In this paper, we present a novel approach to extreme video compression leveraging the predictive power of diffusion-based generative models at the decoder. The conditional diffusion model takes several neural compressed frames and generates subsequent frames. When the reconstruction quality drops below the desired level, new frames are encoded to restart prediction. The entire video is sequentially encoded to achieve a visually pleasing reconstruction, considering perceptual quality metrics such as the learned perceptual image patch similarity (LPIPS) and the Frechet video distance (FVD), at bit rates as low as 0.02 bits per pixel (bpp). Experimental results demonstrate the effectiveness of the proposed scheme compared to standard codecs such as H.264 and H.265 in the low bpp regime. The results showcase the potential of exploiting the temporal relations in video data using generative models. Code is available at: https://github.com/ElesionKyrie/Extreme-Video-Compression-With-Prediction-Using-Pre-trainded-Diffusion-Models-
Abstract:Reconfigurable intelligent surface (RIS) technology is a promising solution to improve the performance of existing wireless communications. To achieve its cost-effectiveness advantage, there inevitably exist certain hardware impairments in the system. Therefore, it is more reasonable to design passive beamforming in this scenario. Some existing research has considered such problems under transceiver impairments. However, their performance still leaves room for improvement, possibly due to their algorithms not properly handling the fractional structure of the objective function. To address this, the passive beamforming is redesigned in this correspondence paper, taking into account both transceiver impairments and the practical phase-shift model. We tackle the fractional structure of the problem by employing the quadratic transform. The remaining sub-problems are addressed utilizing the penalty-based method and the difference-of-convex programming. Since we provide closed-form solutions for all sub-problems, our algorithm is highly efficient. The simulation results demonstrate the superiority of our proposed algorithm.