Abstract:Satellite-ground semantic communication (SemCom) is expected to play a pivotal role in convergence of communication and AI (ComAI), particularly in enabling intelligent and efficient multi-user data transmission. However, the inherent bandwidth constraints and user interference in satellite-ground systems pose significant challenges to semantic fidelity and transmission robustness. To address these issues, we propose a sensitivity-aware model division multiple access (S-MDMA) framework tailored for bandwidth-limited multi-user scenarios. The proposed framework first performs semantic extraction and merging based on the MDMA architecture to consolidate redundant information. To further improve transmission efficiency, a semantic sensitivity sorting algorithm is presented, which can selectively retain key semantic features. In addition, to mitigate inter-user interference, the framework incorporates orthogonal embedding of semantic features and introduces a multi-user reconstruction loss function to guide joint optimization. Experimental results on open-source datasets demonstrate that S-MDMA consistently outperforms existing methods, achieving robust and high-fidelity reconstruction across diverse signal-to-noise ratio (SNR) conditions and user configurations.
Abstract:Semantic Communication (SemCom), leveraging its significant advantages in transmission efficiency and reliability, has emerged as a core technology for constructing future intellicise (intelligent and concise) wireless networks. However, intelligent attacks represented by semantic eavesdropping pose severe challenges to the security of SemCom. To address this challenge, Semantic Steganographic Communication (SemSteCom) achieves ``invisible'' encryption by implicitly embedding private semantic information into cover modality carriers. The state-of-the-art study has further introduced generative diffusion models to directly generate stega images without relying on original cover images, effectively enhancing steganographic capacity. Nevertheless, the recovery process of private images is highly dependent on the guidance of private semantic keys, which may be inferred by intelligent eavesdroppers, thereby introducing new security threats. To address this issue, we propose an Agentic AI-driven SemSteCom (AgentSemSteCom) scheme, which includes semantic extraction, digital token controlled reference image generation, coverless steganography, semantic codec, and optional task-oriented enhancement modules. The proposed AgentSemSteCom scheme obviates the need for both cover images and private semantic keys, thereby boosting steganographic capacity while reinforcing transmission security. The simulation results on open-source datasets verify that, AgentSemSteCom achieves better transmission quality and higher security levels than the baseline scheme.
Abstract:Semantic communication has emerged as a new paradigm to facilitate the performance of integrated sensing and communication systems in 6G. However, most of the existing works mainly focus on sensing data compression to reduce the subsequent communication overheads, without considering the integrated transmission framework for both the SemCom and sensing tasks. This paper proposes an adaptive source-channel coding and beamforming design framework for integrated sensing and SemCom systems by jointly optimizing the coding rate for SemCom task and the transmit beamforming for both the SemCom and sensing tasks. Specifically, an end-to-end semantic distortion function is approximated by deriving an upper bound composing of source and channel coding induced components, and then a hybrid Cramér-Rao bound (HCRB) is also derived for target position under imperfect time synchronization. To facilitate the joint optimization, a distortion minimization problem is formulated by considering the HCRB threshold, channel uses, and power budget. Subsequently, an alternative optimization algorithm composed of successive convex approximation and fractional programming is proposed to address this problem by decoupling it into two subproblems for coding rate and beamforming designs, respectively. Simulation results demonstrate that our proposed scheme outperforms the conventional deep joint source-channel coding -water filling-zero forcing benchmark.
Abstract:Intelligent Connected Vehicles (ICVs) rely on high-speed data transmission for efficient and safety-critical services. However, the scarcity of wireless resources limits the capabilities of ICVs. Semantic Communication (SemCom) systems can alleviate this issue by extracting and transmitting task-relevant information, termed semantic information, instead of the entire raw data. Despite this, we reveal that residual redundancy persists within SemCom systems, where not all instances under the same semantic category are equally critical for downstream tasks. To tackle this issue, we introduce Instance Communication (InsCom), which elevates communication from the semantic level to the instance level for ICVs. Specifically, InsCom uses a scene graph generation model to identify all image instances and analyze their inter-relationships, thus distinguishing between semantically identical instances. Additionally, it applies user-configurable, task-critical criteria based on subject semantics and relation-object pairs to filter recognized instances. Consequently, by transmitting only task-critical instances, InsCom significantly reduces data redundancy, substantially enhancing transmission efficiency within limited wireless resources. Evaluations across various datasets and wireless channel conditions show that InsCom achieves a data volume reduction of over 7.82 times and a quality improvement ranging from 1.75 to 14.03 dB compared to the state-of-the-art SemCom systems.
Abstract:Radio Access Network (RAN) is a bridge between user devices and the core network in mobile communication systems, responsible for the transmission and reception of wireless signals and air interface management. In recent years, Semantic Communication (SemCom) has represented a transformative communication paradigm that prioritizes meaning-level transmission over conventional bit-level delivery, thus providing improved spectrum efficiency, anti-interference ability in complex environments, flexible resource allocation, and enhanced user experience for RAN. However, there is still a lack of comprehensive reviews on the integration of SemCom into RAN. Motivated by this, we systematically explore recent advancements in Semantic RAN (SemRAN). We begin by introducing the fundamentals of RAN and SemCom, identifying the limitations of conventional RAN, and outlining the overall architecture of SemRAN. Subsequently, we review representative techniques of SemRAN across physical layer, data link layer, network layer, and security plane. Furthermore, we envision future services and applications enabled by SemRAN, alongside its current standardization progress. Finally, we conclude by identifying critical research challenges and outlining forward-looking directions to guide subsequent investigations in this burgeoning field.




Abstract:In recent years, image editing has garnered growing attention. However, general image editing models often fail to produce satisfactory results when confronted with new styles. The challenge lies in how to effectively fine-tune general image editing models to new styles using only a limited amount of paired data. To address this issue, this paper proposes a novel few-shot style editing framework. For this task, we construct a benchmark dataset that encompasses five distinct styles. Correspondingly, we propose a parameter-efficient multi-style Mixture-of-Experts Low-Rank Adaptation (MoE LoRA) with style-specific and style-shared routing mechanisms for jointly fine-tuning multiple styles. The style-specific routing ensures that different styles do not interfere with one another, while the style-shared routing adaptively allocates shared MoE LoRAs to learn common patterns. Our MoE LoRA can automatically determine the optimal ranks for each layer through a novel metric-guided approach that estimates the importance score of each single-rank component. Additionally, we explore the optimal location to insert LoRA within the Diffusion in Transformer (DiT) model and integrate adversarial learning and flow matching to guide the diffusion training process. Experimental results demonstrate that our proposed method outperforms existing state-of-the-art approaches with significantly fewer LoRA parameters.
Abstract:As large language models (LLMs) become more capable and widely used, ensuring the safety of their outputs is increasingly critical. Existing guardrail models, though useful in static evaluation settings, face two major limitations in real-world applications: (1) they typically output only binary "safe/unsafe" labels, which can be interpreted inconsistently across diverse safety policies, rendering them incapable of accommodating varying safety tolerances across domains; and (2) they require complete model outputs before performing safety checks, making them fundamentally incompatible with streaming LLM inference, thereby preventing timely intervention during generation and increasing exposure to harmful partial outputs. To address these challenges, we present Qwen3Guard, a series of multilingual safety guardrail models with two specialized variants: Generative Qwen3Guard, which casts safety classification as an instruction-following task to enable fine-grained tri-class judgments (safe, controversial, unsafe); and Stream Qwen3Guard, which introduces a token-level classification head for real-time safety monitoring during incremental text generation. Both variants are available in three sizes (0.6B, 4B, and 8B parameters) and support up to 119 languages and dialects, providing comprehensive, scalable, and low-latency safety moderation for global LLM deployments. Evaluated across English, Chinese, and multilingual benchmarks, Qwen3Guard achieves state-of-the-art performance in both prompt and response safety classification. All models are released under the Apache 2.0 license for public use.
Abstract:Semantic communication (SemCom), as a novel paradigm for future communication systems, has recently attracted much attention due to its superiority in communication efficiency. However, similar to traditional communication, it also suffers from eavesdropping threats. Intelligent eavesdroppers could launch advanced semantic analysis techniques to infer secret semantic information. Therefore, some researchers have designed Semantic Steganography Communication (SemSteCom) scheme to confuse semantic eavesdroppers. However, the state-of-the-art SemSteCom schemes for image transmission rely on the pre-selected cover image, which limits the universality. To address this issue, we propose a Generative Diffusion Model-based Coverless Semantic Steganography Communication (SemSteDiff) scheme to hide secret images into generated stego images. The semantic related private and public keys enable legitimate receiver to decode secret images correctly while the eavesdropper without completely true key-pairs fail to obtain them. Simulation results demonstrate the effectiveness of the plug-and-play design in different Joint Source-Channel Coding (JSCC) frameworks. The comparison results under different eavesdroppers' threats show that, when Signal-to-Noise Ratio (SNR) = 0 dB, the peak signal-to-noise ratio (PSNR) of the legitimate receiver is 4.14 dB higher than that of the eavesdropper.




Abstract:The state-of-the-art semantic communication (SC) schemes typically rely on end-to-end deep learning frameworks that lack interpretability and struggle with robust semantic selection and reconstruction under noisy conditions. To address this issue, this paper presents KGRAG-SC, a knowledge graph-assisted SC framework that leverages retrieval-augmented generation principles. KGRAG-SC employs a multi-dimensional knowledge graph, enabling efficient semantic extraction through community-guided entity linking and GraphRAG-assisted processing. The transmitter constructs minimal connected subgraphs that capture essential semantic relationships and transmits only compact entity indices rather than full text or semantic triples. An importance-aware adaptive transmission strategy provides unequal error protection based on structural centrality metrics, prioritizing critical semantic elements under adverse channel conditions. At the receiver, large language models perform knowledge-driven text reconstruction using the shared knowledge graph as structured context, ensuring robust semantic recovery even with partial information loss. Experimental results demonstrate that KGRAG-SC achieves superior semantic fidelity in low Signal-to-Noise Ratio (SNR) conditions while significantly reducing transmission overhead compared to traditional communication methods, highlighting the effectiveness of integrating structured knowledge representation with generative language models for SC systems.
Abstract:Semantic communication (SemCom), as a typical paradigm of deep integration between artificial intelligence (AI) and communication technology, significantly improves communication efficiency and resource utilization efficiency. However, the security issues of SemCom are becoming increasingly prominent. Semantic features transmitted in plaintext over physical channels are easily intercepted by eavesdroppers. To address this issue, this paper proposes Encrypted Semantic Super-Resolution Enhanced Communication (SREC) to secure SemCom. SREC uses the modulo-256 encryption method to encrypt semantic features, and employs super-resolution reconstruction method to improve the reconstruction quality of images. The simulation results show that in the additive Gaussian white noise (AWGN) channel, when different modulation methods are used, SREC can not only stably guarantee security, but also achieve better transmission performance under low signal-to-noise ratio (SNR) conditions.