Abstract:Traditional self-interference cancellation (SIC) methods are common in full-duplex (FD) integrated sensing and communication (ISAC) systems. However, exploring new SIC schemes is important due to the limitations of traditional approaches. With the challenging limitations of traditional SIC approaches, this paper proposes a novel simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-enabled FD ISAC system, where STAR-RIS enhances simultaneous communication and target sensing and reduces self-interference (SI) to a level comparable to traditional SIC approaches. The optimization of maximizing the sensing signal-to-interference-plus-noise ratio (SINR) and the communication sum rate, both crucial for improving sensing accuracy and overall communication performance, presents significant challenges due to the non-convex nature of these problems. Therefore, we develop alternating optimization algorithms to iteratively tackle these problems. Specifically, we devise the semi-definite relaxation (SDR)-based algorithm for transmit beamformer design. For the reflecting and refracting coefficients design, we adopt the successive convex approximation (SCA) method and implement the SDR-based algorithm to tackle the quartic and quadratic constraints. Simulation results validate the effectiveness of the proposed algorithms and show that the proposed deployment can achieve better performance than that of the benchmark using the traditional SIC approach without STAR-RIS deployment.
Abstract:When Unmanned Aerial Vehicles (UAVs) perform high-precision communication tasks, such as searching for users and providing emergency coverage, positioning errors between base stations and users make it challenging to deploy trajectory planning algorithms. To address these challenges caused by position errors, a framework was proposed to compensate it by Channel Knowledge Map (CKM), which stores channel state information (CSI). By taking the positions with errors as input, the generated CKM could give a prediction of signal attenuation which is close to true positions. Based on that, the predictions are utilized to calculate the received power and a PPO-based algorithm is applied to optimize the compensation. After training, the framework is able to find a strategy that minimize the flight time under communication constraints and positioning error. Besides, the confidence interval is calculated to assist the allocation of power and the update of CKM is studied to adapt to the dynamic environment. Simulation results show the robustness of CKM to positioning error and environmental changes, and the superiority of CKM-assisted UAV communication design.