Senior Member, IEEE
Abstract:Ground reaction force (GRF) is the force exerted by the ground on a body in contact with it. GRF-based automatic disease detection (ADD) has become an emerging medical diagnosis method, which aims to learn and identify disease patterns corresponding to different gait pressures based on deep learning methods. Although existing ADD methods can save doctors time in making diagnoses, training deep models still struggles with the cost caused by the labeling engineering for a large number of gait diagnostic data for subjects. On the other hand, the accuracy of the deep model under the unified benchmark GRF dataset and the generalization ability on scalable gait datasets need to be further improved. To address these issues, we propose MA2, a GRF-based self-supervised and motion augmenting auto-encoder, which models the ADD task as an encoder-decoder paradigm. In the encoder, we introduce an embedding block including the 3-layer 1D convolution for extracting the token and a mask generator to randomly mask out the sequence of tokens to maximize the model's potential to capture high-level, discriminative, intrinsic representations. whereafter, the decoder utilizes this information to reconstruct the pixel sequence of the origin input and calculate the reconstruction loss to optimize the network. Moreover, the backbone of an auto-encoder is multi-head self-attention that can consider the global information of the token from the input, not just the local neighborhood. This allows the model to capture generalized contextual information. Extensive experiments demonstrate MA2 has SOTA performance of 90.91% accuracy on 1% limited pathological GRF samples with labels, and good generalization ability of 78.57% accuracy on scalable Parkinson disease dataset.
Abstract:Target speaker extraction (TSE) relies on a reference cue of the target to extract the target speech from a speech mixture. While a speaker embedding is commonly used as the reference cue, such embedding pre-trained with a large number of speakers may suffer from confusion of speaker identity. In this work, we propose a multi-level speaker representation approach, from raw features to neural embeddings, to serve as the speaker reference cue. We generate a spectral-level representation from the enrollment magnitude spectrogram as a raw, low-level feature, which significantly improves the model's generalization capability. Additionally, we propose a contextual embedding feature based on cross-attention mechanisms that integrate frame-level embeddings from a pre-trained speaker encoder. By incorporating speaker features across multiple levels, we significantly enhance the performance of the TSE model. Our approach achieves a 2.74 dB improvement and a 4.94% increase in extraction accuracy on Libri2mix test set over the baseline.
Abstract:Model-based reinforcement learning (RL) offers a solution to the data inefficiency that plagues most model-free RL algorithms. However, learning a robust world model often demands complex and deep architectures, which are expensive to compute and train. Within the world model, dynamics models are particularly crucial for accurate predictions, and various dynamics-model architectures have been explored, each with its own set of challenges. Currently, recurrent neural network (RNN) based world models face issues such as vanishing gradients and difficulty in capturing long-term dependencies effectively. In contrast, use of transformers suffers from the well-known issues of self-attention mechanisms, where both memory and computational complexity scale as $O(n^2)$, with $n$ representing the sequence length. To address these challenges we propose a state space model (SSM) based world model, specifically based on Mamba, that achieves $O(n)$ memory and computational complexity while effectively capturing long-term dependencies and facilitating the use of longer training sequences efficiently. We also introduce a novel sampling method to mitigate the suboptimality caused by an incorrect world model in the early stages of training, combining it with the aforementioned technique to achieve a normalised score comparable to other state-of-the-art model-based RL algorithms using only a 7 million trainable parameter world model. This model is accessible and can be trained on an off-the-shelf laptop. Our code is available at https://github.com/realwenlongwang/drama.git.
Abstract:Humanitarian organizations can enhance their effectiveness by analyzing data to discover trends, gather aggregated insights, manage their security risks, support decision-making, and inform advocacy and funding proposals. However, data about violent incidents with direct impact and relevance for humanitarian aid operations is not readily available. An automatic data collection and NLP-backed classification framework aligned with humanitarian perspectives can help bridge this gap. In this paper, we present HumVI - a dataset comprising news articles in three languages (English, French, Arabic) containing instances of different types of violent incidents categorized by the humanitarian sector they impact, e.g., aid security, education, food security, health, and protection. Reliable labels were obtained for the dataset by partnering with a data-backed humanitarian organization, Insecurity Insight. We provide multiple benchmarks for the dataset, employing various deep learning architectures and techniques, including data augmentation and mask loss, to address different task-related challenges, e.g., domain expansion. The dataset is publicly available at https://github.com/dataminr-ai/humvi-dataset.
Abstract:The expanding context windows in large language models (LLMs) have greatly enhanced their capabilities in various applications, but they also introduce significant challenges in maintaining low latency, particularly in Time to First Token (TTFT). This paper identifies that the sharp rise in TTFT as context length increases is predominantly driven by queuing delays, which are caused by the growing demands for GPU Key-Value (KV) cache allocation clashing with the limited availability of KV cache blocks. To address this issue, we propose LayerKV, a simple yet effective plug-in method that effectively reduces TTFT without requiring additional hardware or compromising output performance, while seamlessly integrating with existing parallelism strategies and scheduling techniques. Specifically, LayerKV introduces layer-wise KV block allocation, management, and offloading for fine-grained control over system memory, coupled with an SLO-aware scheduler to optimize overall Service Level Objectives (SLOs). Comprehensive evaluations on representative models, ranging from 7B to 70B parameters, across various GPU configurations, demonstrate that LayerKV improves TTFT latency up to 11x and reduces SLO violation rates by 28.7\%, significantly enhancing the user experience
Abstract:Despite the impressive advancements made in recent low-light image enhancement techniques, the scarcity of paired data has emerged as a significant obstacle to further advancements. This work proposes a mean-teacher-based semi-supervised low-light enhancement (Semi-LLIE) framework that integrates the unpaired data into model training. The mean-teacher technique is a prominent semi-supervised learning method, successfully adopted for addressing high-level and low-level vision tasks. However, two primary issues hinder the naive mean-teacher method from attaining optimal performance in low-light image enhancement. Firstly, pixel-wise consistency loss is insufficient for transferring realistic illumination distribution from the teacher to the student model, which results in color cast in the enhanced images. Secondly, cutting-edge image enhancement approaches fail to effectively cooperate with the mean-teacher framework to restore detailed information in dark areas due to their tendency to overlook modeling structured information within local regions. To mitigate the above issues, we first introduce a semantic-aware contrastive loss to faithfully transfer the illumination distribution, contributing to enhancing images with natural colors. Then, we design a Mamba-based low-light image enhancement backbone to effectively enhance Mamba's local region pixel relationship representation ability with a multi-scale feature learning scheme, facilitating the generation of images with rich textural details. Further, we propose novel perceptive loss based on the large-scale vision-language Recognize Anything Model (RAM) to help generate enhanced images with richer textual details. The experimental results indicate that our Semi-LLIE surpasses existing methods in both quantitative and qualitative metrics.
Abstract:Target speaker extraction (TSE) focuses on isolating the speech of a specific target speaker from overlapped multi-talker speech, which is a typical setup in the cocktail party problem. In recent years, TSE draws increasing attention due to its potential for various applications such as user-customized interfaces and hearing aids, or as a crutial front-end processing technologies for subsequential tasks such as speech recognition and speaker recongtion. However, there are currently few open-source toolkits or available pre-trained models for off-the-shelf usage. In this work, we introduce WeSep, a toolkit designed for research and practical applications in TSE. WeSep is featured with flexible target speaker modeling, scalable data management, effective on-the-fly data simulation, structured recipes and deployment support. The toolkit is publicly avaliable at \url{https://github.com/wenet-e2e/WeSep.}
Abstract:Deep learning technologies have significantly advanced the performance of target speaker extraction (TSE) tasks. To enhance the generalization and robustness of these algorithms when training data is insufficient, data augmentation is a commonly adopted technique. Unlike typical data augmentation applied to speech mixtures, this work thoroughly investigates the effectiveness of augmenting the enrollment speech space. We found that for both pretrained and jointly optimized speaker encoders, directly augmenting the enrollment speech leads to consistent performance improvement. In addition to conventional methods such as noise and reverberation addition, we propose a novel augmentation method called self-estimated speech augmentation (SSA). Experimental results on the Libri2Mix test set show that our proposed method can achieve an improvement of up to 2.5 dB.
Abstract:Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests. This surge in demand poses significant challenges in optimizing throughput and latency while keeping costs manageable. The Key-Value (KV) cache, a standard method for retaining previous computations, makes LLM inference highly bounded by memory. While batching strategies can enhance performance, they frequently lead to significant memory fragmentation. Even though cutting-edge systems like vLLM mitigate KV cache fragmentation using paged Attention mechanisms, they still suffer from inefficient memory and computational operations due to the tightly coupled page management and computation kernels. This study introduces the vTensor, an innovative tensor structure for LLM inference based on GPU virtual memory management (VMM). vTensor addresses existing limitations by decoupling computation from memory defragmentation and offering dynamic extensibility. Our framework employs a CPU-GPU heterogeneous approach, ensuring efficient, fragmentation-free memory management while accommodating various computation kernels across different LLM architectures. Experimental results indicate that vTensor achieves an average speedup of 1.86x across different models, with up to 2.42x in multi-turn chat scenarios. Additionally, vTensor provides average speedups of 2.12x and 3.15x in kernel evaluation, reaching up to 3.92x and 3.27x compared to SGLang Triton prefix-prefilling kernels and vLLM paged Attention kernel, respectively. Furthermore, it frees approximately 71.25% (57GB) of memory on the NVIDIA A100 GPU compared to vLLM, enabling more memory-intensive workloads.
Abstract:Pixel-level dense labeling is both resource-intensive and time-consuming, whereas weak labels such as scribble present a more feasible alternative to full annotations. However, training segmentation networks with weak supervision from scribbles remains challenging. Inspired by the fact that different segmentation tasks can be correlated with each other, we introduce a new approach to few-scribble supervised segmentation based on model parameter interpolation, termed as ModelMix. Leveraging the prior knowledge that linearly interpolating convolution kernels and bias terms should result in linear interpolations of the corresponding feature vectors, ModelMix constructs virtual models using convex combinations of convolutional parameters from separate encoders. We then regularize the model set to minimize vicinal risk across tasks in both unsupervised and scribble-supervised way. Validated on three open datasets, i.e., ACDC, MSCMRseg, and MyoPS, our few-scribble guided ModelMix significantly surpasses the performance of the state-of-the-art scribble supervised methods.