Abstract:Exploring the optimal management strategy for nitrogen and irrigation has a significant impact on crop yield, economic profit, and the environment. To tackle this optimization challenge, this paper introduces a deployable \textbf{CR}op Management system \textbf{O}ver all \textbf{P}ossible \textbf{S}tate availabilities (CROPS). CROPS employs a language model (LM) as a reinforcement learning (RL) agent to explore optimal management strategies within the Decision Support System for Agrotechnology Transfer (DSSAT) crop simulations. A distinguishing feature of this system is that the states used for decision-making are partially observed through random masking. Consequently, the RL agent is tasked with two primary objectives: optimizing management policies and inferring masked states. This approach significantly enhances the RL agent's robustness and adaptability across various real-world agricultural scenarios. Extensive experiments on maize crops in Florida, USA, and Zaragoza, Spain, validate the effectiveness of CROPS. Not only did CROPS achieve State-of-the-Art (SOTA) results across various evaluation metrics such as production, profit, and sustainability, but the trained management policies are also immediately deployable in over of ten millions of real-world contexts. Furthermore, the pre-trained policies possess a noise resilience property, which enables them to minimize potential sensor biases, ensuring robustness and generalizability. Finally, unlike previous methods, the strength of CROPS lies in its unified and elegant structure, which eliminates the need for pre-defined states or multi-stage training. These advancements highlight the potential of CROPS in revolutionizing agricultural practices.
Abstract:Artificial intelligence has made significant strides in medical visual question answering (Med-VQA), yet prevalent studies often interpret images holistically, overlooking the visual regions of interest that may contain crucial information, potentially aligning with a doctor's prior knowledge that can be incorporated with minimal annotations (e.g., bounding boxes). To address this gap, this paper introduces R-LLaVA, designed to enhance biomedical VQA understanding by integrating simple medical annotations as prior knowledge directly into the image space through CLIP. These annotated visual regions of interest are then fed into the LLaVA model during training, aiming to enrich the model's understanding of biomedical queries. Experimental evaluation on four standard Med-VQA datasets demonstrates R-LLaVA's superiority over existing state-of-the-art (SoTA) methods. Additionally, to verify the model's capability in visual comprehension, a novel multiple-choice medical visual understanding dataset is introduced, confirming the positive impact of focusing on visual regions of interest in advancing biomedical VQA understanding.
Abstract:Diffusion models have recently achieved remarkable advancements in terms of image quality and fidelity to textual prompts. Concurrently, the safety of such generative models has become an area of growing concern. This work introduces a novel type of jailbreak, which triggers T2I models to generate the image with visual text, where the image and the text, although considered to be safe in isolation, combine to form unsafe content. To systematically explore this phenomenon, we propose a dataset to evaluate the current diffusion-based text-to-image (T2I) models under such jailbreak. We benchmark nine representative T2I models, including two close-source commercial models. Experimental results reveal a concerning tendency to produce unsafe content: all tested models suffer from such type of jailbreak, with rates of unsafe generation ranging from 8\% to 74\%. In real-world scenarios, various filters such as keyword blocklists, customized prompt filters, and NSFW image filters, are commonly employed to mitigate these risks. We evaluate the effectiveness of such filters against our jailbreak and found that, while current classifiers may be effective for single modality detection, they fail to work against our jailbreak. Our work provides a foundation for further development towards more secure and reliable T2I models.
Abstract:The classification of insect pests is a critical task in agricultural technology, vital for ensuring food security and environmental sustainability. However, the complexity of pest identification, due to factors like high camouflage and species diversity, poses significant obstacles. Existing methods struggle with the fine-grained feature extraction needed to distinguish between closely related pest species. Although recent advancements have utilized modified network structures and combined deep learning approaches to improve accuracy, challenges persist due to the similarity between pests and their surroundings. To address this problem, we introduce InsectMamba, a novel approach that integrates State Space Models (SSMs), Convolutional Neural Networks (CNNs), Multi-Head Self-Attention mechanism (MSA), and Multilayer Perceptrons (MLPs) within Mix-SSM blocks. This integration facilitates the extraction of comprehensive visual features by leveraging the strengths of each encoding strategy. A selective module is also proposed to adaptively aggregate these features, enhancing the model's ability to discern pest characteristics. InsectMamba was evaluated against strong competitors across five insect pest classification datasets. The results demonstrate its superior performance and verify the significance of each model component by an ablation study.
Abstract:In this study, we uncover the unexpected efficacy of residual-based large language models (LLMs) as part of encoders for biomedical imaging tasks, a domain traditionally devoid of language or textual data. The approach diverges from established methodologies by utilizing a frozen transformer block, extracted from pre-trained LLMs, as an innovative encoder layer for the direct processing of visual tokens. This strategy represents a significant departure from the standard multi-modal vision-language frameworks, which typically hinge on language-driven prompts and inputs. We found that these LLMs could boost performance across a spectrum of biomedical imaging applications, including both 2D and 3D visual classification tasks, serving as plug-and-play boosters. More interestingly, as a byproduct, we found that the proposed framework achieved superior performance, setting new state-of-the-art results on extensive, standardized datasets in MedMNIST-2D and 3D. Through this work, we aim to open new avenues for employing LLMs in biomedical imaging and enriching the understanding of their potential in this specialized domain.
Abstract:Crop management plays a crucial role in determining crop yield, economic profitability, and environmental sustainability. Despite the availability of management guidelines, optimizing these practices remains a complex and multifaceted challenge. In response, previous studies have explored using reinforcement learning with crop simulators, typically employing simple neural-network-based reinforcement learning (RL) agents. Building on this foundation, this paper introduces a more advanced intelligent crop management system. This system uniquely combines RL, a language model (LM), and crop simulations facilitated by the Decision Support System for Agrotechnology Transfer (DSSAT). We utilize deep RL, specifically a deep Q-network, to train management policies that process numerous state variables from the simulator as observations. A novel aspect of our approach is the conversion of these state variables into more informative language, facilitating the language model's capacity to understand states and explore optimal management practices. The empirical results reveal that the LM exhibits superior learning capabilities. Through simulation experiments with maize crops in Florida (US) and Zaragoza (Spain), the LM not only achieves state-of-the-art performance under various evaluation metrics but also demonstrates a remarkable improvement of over 49\% in economic profit, coupled with reduced environmental impact when compared to baseline methods. Our code is available at \url{https://github.com/jingwu6/LM_AG}.
Abstract:The conditional text-to-image diffusion models have garnered significant attention in recent years. However, the precision of these models is often compromised mainly for two reasons, ambiguous condition input and inadequate condition guidance over single denoising loss. To address the challenges, we introduce two innovative solutions. Firstly, we propose a Spatial Guidance Injector (SGI) which enhances conditional detail by encoding text inputs with precise annotation information. This method directly tackles the issue of ambiguous control inputs by providing clear, annotated guidance to the model. Secondly, to overcome the issue of limited conditional supervision, we introduce Diffusion Consistency Loss (DCL), which applies supervision on the denoised latent code at any given time step. This encourages consistency between the latent code at each time step and the input signal, thereby enhancing the robustness and accuracy of the output. The combination of SGI and DCL results in our Effective Controllable Network (ECNet), which offers a more accurate controllable end-to-end text-to-image generation framework with a more precise conditioning input and stronger controllable supervision. We validate our approach through extensive experiments on generation under various conditions, such as human body skeletons, facial landmarks, and sketches of general objects. The results consistently demonstrate that our method significantly enhances the controllability and robustness of the generated images, outperforming existing state-of-the-art controllable text-to-image models.
Abstract:Large language models (LLMs) have reached human-like proficiency in generating diverse textual content, underscoring the necessity for effective fake text detection to avoid potential risks such as fake news in social media. Previous research has mostly tested single models on in-distribution datasets, limiting our understanding of how these models perform on different types of data for LLM-generated text detection task. We researched this by testing five specialized transformer-based models on both in-distribution and out-of-distribution datasets to better assess their performance and generalizability. Our results revealed that single transformer-based classifiers achieved decent performance on in-distribution dataset but limited generalization ability on out-of-distribution dataset. To improve it, we combined the individual classifiers models using adaptive ensemble algorithms, which improved the average accuracy significantly from 91.8% to 99.2% on an in-distribution test set and from 62.9% to 72.5% on an out-of-distribution test set. The results indicate the effectiveness, good generalization ability, and great potential of adaptive ensemble algorithms in LLM-generated text detection.