Cheems
Abstract:This paper addresses the challenge of Neural Field (NeF) generalization, where models must efficiently adapt to new signals given only a few observations. To tackle this, we propose Geometric Neural Process Fields (G-NPF), a probabilistic framework for neural radiance fields that explicitly captures uncertainty. We formulate NeF generalization as a probabilistic problem, enabling direct inference of NeF function distributions from limited context observations. To incorporate structural inductive biases, we introduce a set of geometric bases that encode spatial structure and facilitate the inference of NeF function distributions. Building on these bases, we design a hierarchical latent variable model, allowing G-NPF to integrate structural information across multiple spatial levels and effectively parameterize INR functions. This hierarchical approach improves generalization to novel scenes and unseen signals. Experiments on novel-view synthesis for 3D scenes, as well as 2D image and 1D signal regression, demonstrate the effectiveness of our method in capturing uncertainty and leveraging structural information for improved generalization.
Abstract:The foundation model enables fast problem-solving without learning from scratch, and such a desirable adaptation property benefits from its adopted cross-task generalization paradigms, e.g., pretraining, meta-training, or finetuning. Recent trends have focused on the curation of task datasets during optimization, which includes task selection as an indispensable consideration for either adaptation robustness or sampling efficiency purposes. Despite some progress, selecting crucial task batches to optimize over iteration mostly exhausts massive task queries and requires intensive evaluation and computations to secure robust adaptation. This work underscores the criticality of both robustness and learning efficiency, especially in scenarios where tasks are risky to collect or costly to evaluate. To this end, we present Model Predictive Task Sampling (MPTS), a novel active task sampling framework to establish connections between the task space and adaptation risk landscape achieve robust adaptation. Technically, MPTS characterizes the task episodic information with a generative model and predicts optimization outcome after adaptation from posterior inference, i.e., forecasting task-specific adaptation risk values. The resulting risk learner amortizes expensive annotation, evaluation, or computation operations in task robust adaptation learning paradigms. Extensive experimental results show that MPTS can be seamlessly integrated into zero-shot, few-shot, and many-shot learning paradigms, increases adaptation robustness, and retains learning efficiency without affording extra cost. The code will be available at the project site https://github.com/thu-rllab/MPTS.
Abstract:Visual-language models (VLM) have emerged as a powerful tool for learning a unified embedding space for vision and language. Inspired by large language models, which have demonstrated strong reasoning and multi-task capabilities, visual large language models (VLLMs) are gaining increasing attention for building general-purpose VLMs. Despite the significant progress made in VLLMs, the related literature remains limited, particularly from a comprehensive application perspective, encompassing generalized and specialized applications across vision (image, video, depth), action, and language modalities. In this survey, we focus on the diverse applications of VLLMs, examining their using scenarios, identifying ethics consideration and challenges, and discussing future directions for their development. By synthesizing these contents, we aim to provide a comprehensive guide that will pave the way for future innovations and broader applications of VLLMs. The paper list repository is available: https://github.com/JackYFL/awesome-VLLMs.
Abstract:Advancing towards generalist agents necessitates the concurrent processing of multiple tasks using a unified model, thereby underscoring the growing significance of simultaneous model training on multiple downstream tasks. A common issue in multi-task learning is the occurrence of gradient conflict, which leads to potential competition among different tasks during joint training. This competition often results in improvements in one task at the expense of deterioration in another. Although several optimization methods have been developed to address this issue by manipulating task gradients for better task balancing, they cannot decrease the incidence of gradient conflict. In this paper, we systematically investigate the occurrence of gradient conflict across different methods and propose a strategy to reduce such conflicts through sparse training (ST), wherein only a portion of the model's parameters are updated during training while keeping the rest unchanged. Our extensive experiments demonstrate that ST effectively mitigates conflicting gradients and leads to superior performance. Furthermore, ST can be easily integrated with gradient manipulation techniques, thus enhancing their effectiveness.
Abstract:While multi-agent systems have been shown to significantly enhance the performance of Large Language Models (LLMs) across various tasks and applications, the dense interaction between scaling agents potentially hampers their efficiency and diversity. To address these challenges, we draw inspiration from the sparse mixture-of-agents (SMoE) and propose a sparse mixture-of-agents (SMoA) framework to improve the efficiency and diversity of multi-agent LLMs. Unlike completely connected structures, SMoA introduces novel Response Selection and Early Stopping mechanisms to sparsify information flows among individual LLM agents, striking a balance between performance and efficiency. Additionally, inspired by the expert diversity principle in SMoE frameworks for workload balance between experts, we assign distinct role descriptions to each LLM agent, fostering diverse and divergent thinking. Extensive experiments on reasoning, alignment, and fairness benchmarks demonstrate that SMoA achieves performance comparable to traditional mixture-of-agents approaches but with significantly lower computational costs. Further analysis reveals that SMoA is more stable, has a greater capacity to scale, and offers considerable potential through hyper-parameter optimization. Code and data will be available at: https://github.com/David-Li0406/SMoA.
Abstract:This paper proposes \textit{GO4Align}, a multi-task optimization approach that tackles task imbalance by explicitly aligning the optimization across tasks. To achieve this, we design an adaptive group risk minimization strategy, compromising two crucial techniques in implementation: (i) dynamical group assignment, which clusters similar tasks based on task interactions; (ii) risk-guided group indicators, which exploit consistent task correlations with risk information from previous iterations. Comprehensive experimental results on diverse typical benchmarks demonstrate our method's performance superiority with even lower computational costs.
Abstract:Image-language models with prompt learning have shown remarkable advances in numerous downstream vision tasks. Nevertheless, conventional prompt learning methods overfit their training distribution and lose the generalization ability on test distributions. To improve generalization across various distribution shifts, we propose any-shift prompting: a general probabilistic inference framework that considers the relationship between training and test distributions during prompt learning. We explicitly connect training and test distributions in the latent space by constructing training and test prompts in a hierarchical architecture. Within this framework, the test prompt exploits the distribution relationships to guide the generalization of the CLIP image-language model from training to any test distribution. To effectively encode the distribution information and their relationships, we further introduce a transformer inference network with a pseudo-shift training mechanism. The network generates the tailored test prompt with both training and test information in a feedforward pass, avoiding extra training costs at test time. Extensive experiments on twenty-three datasets demonstrate the effectiveness of any-shift prompting on the generalization over various distribution shifts.
Abstract:This paper focuses on the data-insufficiency problem in multi-task learning within an episodic training setup. Specifically, we explore the potential of heterogeneous information across tasks and meta-knowledge among episodes to effectively tackle each task with limited data. Existing meta-learning methods often fail to take advantage of crucial heterogeneous information in a single episode, while multi-task learning models neglect reusing experience from earlier episodes. To address the problem of insufficient data, we develop Heterogeneous Neural Processes (HNPs) for the episodic multi-task setup. Within the framework of hierarchical Bayes, HNPs effectively capitalize on prior experiences as meta-knowledge and capture task-relatedness among heterogeneous tasks, mitigating data-insufficiency. Meanwhile, transformer-structured inference modules are designed to enable efficient inferences toward meta-knowledge and task-relatedness. In this way, HNPs can learn more powerful functional priors for adapting to novel heterogeneous tasks in each meta-test episode. Experimental results show the superior performance of the proposed HNPs over typical baselines, and ablation studies verify the effectiveness of the designed inference modules.
Abstract:The variety and complexity of relations in multimedia data lead to Heterogeneous Information Networks (HINs). Capturing the semantics from such networks requires approaches capable of utilizing the full richness of the HINs. Existing methods for modeling HINs employ techniques originally designed for graph neural networks, and HINs decomposition analysis, like using manually predefined metapaths. In this paper, we introduce a novel prototype-enhanced hypergraph learning approach for node classification in HINs. Using hypergraphs instead of graphs, our method captures higher-order relationships among nodes and extracts semantic information without relying on metapaths. Our method leverages the power of prototypes to improve the robustness of the hypergraph learning process and creates the potential to provide human-interpretable insights into the underlying network structure. Extensive experiments on three real-world HINs demonstrate the effectiveness of our method.
Abstract:This paper strives for domain generalization, where models are trained exclusively on source domains before being deployed at unseen target domains. We follow the strict separation of source training and target testing but exploit the value of the unlabeled target data itself during inference. We make three contributions. First, we propose probabilistic pseudo-labeling of target samples to generalize the source-trained model to the target domain at test time. We formulate the generalization at test time as a variational inference problem by modeling pseudo labels as distributions to consider the uncertainty during generalization and alleviate the misleading signal of inaccurate pseudo labels. Second, we learn variational neighbor labels that incorporate the information of neighboring target samples to generate more robust pseudo labels. Third, to learn the ability to incorporate more representative target information and generate more precise and robust variational neighbor labels, we introduce a meta-generalization stage during training to simulate the generalization procedure. Experiments on six widely-used datasets demonstrate the benefits, abilities, and effectiveness of our proposal.