Abstract:Understanding bimanual human hand activities is a critical problem in AI and robotics. We cannot build large models of bimanual activities because existing datasets lack the scale, coverage of diverse hand activities, and detailed annotations. We introduce GigaHands, a massive annotated dataset capturing 34 hours of bimanual hand activities from 56 subjects and 417 objects, totaling 14k motion clips derived from 183 million frames paired with 84k text annotations. Our markerless capture setup and data acquisition protocol enable fully automatic 3D hand and object estimation while minimizing the effort required for text annotation. The scale and diversity of GigaHands enable broad applications, including text-driven action synthesis, hand motion captioning, and dynamic radiance field reconstruction.
Abstract:Recent advancements in large multimodal models (LMMs) have showcased impressive code generation capabilities, primarily evaluated through image-to-code benchmarks. However, these benchmarks are limited to specific visual programming scenarios where the logic reasoning and the multimodal understanding capacities are split apart. To fill this gap, we propose ScratchEval, a novel benchmark designed to evaluate the visual programming reasoning ability of LMMs. ScratchEval is based on Scratch, a block-based visual programming language widely used in children's programming education. By integrating visual elements and embedded programming logic, ScratchEval requires the model to process both visual information and code structure, thereby comprehensively evaluating its programming intent understanding ability. Our evaluation approach goes beyond the traditional image-to-code mapping and focuses on unified logical thinking and problem-solving abilities, providing a more comprehensive and challenging framework for evaluating the visual programming ability of LMMs. ScratchEval not only fills the gap in existing evaluation methods, but also provides new insights for the future development of LMMs in the field of visual programming. Our benchmark can be accessed at https://github.com/HKBUNLP/ScratchEval .
Abstract:This paper introduces Scene-LLM, a 3D-visual-language model that enhances embodied agents' abilities in interactive 3D indoor environments by integrating the reasoning strengths of Large Language Models (LLMs). Scene-LLM adopts a hybrid 3D visual feature representation, that incorporates dense spatial information and supports scene state updates. The model employs a projection layer to efficiently project these features in the pre-trained textual embedding space, enabling effective interpretation of 3D visual information. Unique to our approach is the integration of both scene-level and ego-centric 3D information. This combination is pivotal for interactive planning, where scene-level data supports global planning and ego-centric data is important for localization. Notably, we use ego-centric 3D frame features for feature alignment, an efficient technique that enhances the model's ability to align features of small objects within the scene. Our experiments with Scene-LLM demonstrate its strong capabilities in dense captioning, question answering, and interactive planning. We believe Scene-LLM advances the field of 3D visual understanding and reasoning, offering new possibilities for sophisticated agent interactions in indoor settings.
Abstract:In the financial services industry, forecasting the risk factor distribution conditional on the history and the current market environment is the key to market risk modeling in general and value at risk (VaR) model in particular. As one of the most widely adopted VaR models in commercial banks, Historical simulation (HS) uses the empirical distribution of daily returns in a historical window as the forecast distribution of risk factor returns in the next day. The objectives for financial time series generation are to generate synthetic data paths with good variety, and similar distribution and dynamics to the original historical data. In this paper, we apply multiple existing deep generative methods (e.g., CGAN, CWGAN, Diffusion, and Signature WGAN) for conditional time series generation, and propose and test two new methods for conditional multi-step time series generation, namely Encoder-Decoder CGAN and Conditional TimeVAE. Furthermore, we introduce a comprehensive framework with a set of KPIs to measure the quality of the generated time series for financial modeling. The KPIs cover distribution distance, autocorrelation and backtesting. All models (HS, parametric and neural networks) are tested on both historical USD yield curve data and additional data simulated from GARCH and CIR processes. The study shows that top performing models are HS, GARCH and CWGAN models. Future research directions in this area are also discussed.
Abstract:We introduce AnyHome, a framework that translates open-vocabulary descriptions, ranging from simple labels to elaborate paragraphs, into well-structured and textured 3D indoor scenes at a house-scale. Inspired by cognition theories, AnyHome employs an amodal structured representation to capture 3D spatial cues from textual narratives and then uses egocentric inpainting to enrich these scenes. To this end, we begin by using specially designed template prompts for Large Language Models (LLMs), which enable precise control over the textual input. We then utilize intermediate representations to maintain the spatial structure's consistency, ensuring that the 3D scenes align closely with the textual description. Then, we apply a Score Distillation Sampling process to refine the placement of objects. Lastly, an egocentric inpainting process is incorporated to enhance the realism and appearance of the scenes. AnyHome stands out due to its hierarchical structured representation combined with the versatility of open-vocabulary text interpretation. This allows for extensive customization of indoor scenes at various levels of granularity. We demonstrate that AnyHome can reliably generate a range of diverse indoor scenes, characterized by their detailed spatial structures and textures, all corresponding to the free-form textual inputs.
Abstract:A generative model for high-fidelity point clouds is of great importance in synthesizing 3d environments for applications such as autonomous driving and robotics. Despite the recent success of deep generative models for 2d images, it is non-trivial to generate 3d point clouds without a comprehensive understanding of both local and global geometric structures. In this paper, we devise a new 3d point cloud generation framework using a divide-and-conquer approach, where the whole generation process can be divided into a set of patch-wise generation tasks. Specifically, all patch generators are based on learnable priors, which aim to capture the information of geometry primitives. We introduce point- and patch-wise transformers to enable the interactions between points and patches. Therefore, the proposed divide-and-conquer approach contributes to a new understanding of point cloud generation from the geometry constitution of 3d shapes. Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation, where it clearly outperforms recent state-of-the-art methods for high-fidelity point cloud generation.
Abstract:This paper proposes BPNet, a novel end-to-end deep learning framework to learn B\'ezier primitive segmentation on 3D point clouds. The existing works treat different primitive types separately, thus limiting them to finite shape categories. To address this issue, we seek a generalized primitive segmentation on point clouds. Taking inspiration from B\'ezier decomposition on NURBS models, we transfer it to guide point cloud segmentation casting off primitive types. A joint optimization framework is proposed to learn B\'ezier primitive segmentation and geometric fitting simultaneously on a cascaded architecture. Specifically, we introduce a soft voting regularizer to improve primitive segmentation and propose an auto-weight embedding module to cluster point features, making the network more robust and generic. We also introduce a reconstruction module where we successfully process multiple CAD models with different primitives simultaneously. We conducted extensive experiments on the synthetic ABC dataset and real-scan datasets to validate and compare our approach with different baseline methods. Experiments show superior performance over previous work in terms of segmentation, with a substantially faster inference speed.
Abstract:The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation. Thanks to its impressive capabilities in all-round segmentation tasks and its prompt-based interface, SAM has sparked intensive discussion within the community. It is even said by many prestigious experts that image segmentation task has been "finished" by SAM. However, medical image segmentation, although an important branch of the image segmentation family, seems not to be included in the scope of Segmenting "Anything". Many individual experiments and recent studies have shown that SAM performs subpar in medical image segmentation. A natural question is how to find the missing piece of the puzzle to extend the strong segmentation capability of SAM to medical image segmentation. In this paper, instead of fine-tuning the SAM model, we propose Med SAM Adapter, which integrates the medical specific domain knowledge to the segmentation model, by a simple yet effective adaptation technique. Although this work is still one of a few to transfer the popular NLP technique Adapter to computer vision cases, this simple implementation shows surprisingly good performance on medical image segmentation. A medical image adapted SAM, which we have dubbed Medical SAM Adapter (MSA), shows superior performance on 19 medical image segmentation tasks with various image modalities including CT, MRI, ultrasound image, fundus image, and dermoscopic images. MSA outperforms a wide range of state-of-the-art (SOTA) medical image segmentation methods, such as nnUNet, TransUNet, UNetr, MedSegDiff, and also outperforms the fully fine-turned MedSAM with a considerable performance gap. Code will be released at: https://github.com/WuJunde/Medical-SAM-Adapter.
Abstract:This paper presents a novel method for efficiently solving trajectory planning problems for swarm robotics in cluttered environments. While recent research has demonstrated high success rates in real-time local trajectory planning for swarm robotics in cluttered environments, optimizing every trajectory for each robot is computationally expensive, with a computational complexity of $O\left(n^2\right)$ to $ O\left(n^3\right)$. To address this issue, we first propose the concept of the \emph{optimal virtual tube}, which includes infinite optimal trajectories. Under certain conditions, any optimal trajectory in the optimal virtual tube can be expressed as a convex combination of a finite number of optimal trajectories, with a computational complexity of $O\left(1\right)$. Afterward, a planning method of \emph{the optimal virtual tube} is proposed. In simulations and experiments, we show that the proposed method efficiently reduces calculation and is validated by comparison with traditional methods.
Abstract:Language is one of the primary means by which we describe the 3D world around us. While rapid progress has been made in text-to-2D-image synthesis, similar progress in text-to-3D-shape synthesis has been hindered by the lack of paired (text, shape) data. Moreover, extant methods for text-to-shape generation have limited shape diversity and fidelity. We introduce TextCraft, a method to address these limitations by producing high-fidelity and diverse 3D shapes without the need for (text, shape) pairs for training. TextCraft achieves this by using CLIP and using a multi-resolution approach by first generating in a low-dimensional latent space and then upscaling to a higher resolution, improving the fidelity of the generated shape. To improve shape diversity, we use a discrete latent space which is modelled using a bidirectional transformer conditioned on the interchangeable image-text embedding space induced by CLIP. Moreover, we present a novel variant of classifier-free guidance, which further improves the accuracy-diversity trade-off. Finally, we perform extensive experiments that demonstrate that TextCraft outperforms state-of-the-art baselines.