Abstract:The application of large language models (LLMs) in the medical field has gained significant attention, yet their reasoning capabilities in more specialized domains like anesthesiology remain underexplored. In this paper, we systematically evaluate the reasoning capabilities of LLMs in anesthesiology and analyze key factors influencing their performance. To this end, we introduce AnesBench, a cross-lingual benchmark designed to assess anesthesiology-related reasoning across three levels: factual retrieval (System 1), hybrid reasoning (System 1.x), and complex decision-making (System 2). Through extensive experiments, we first explore how model characteristics, including model scale, Chain of Thought (CoT) length, and language transferability, affect reasoning performance. Then, we further evaluate the effectiveness of different training strategies, leveraging our curated anesthesiology-related dataset, including continuous pre-training (CPT) and supervised fine-tuning (SFT). Additionally, we also investigate how the test-time reasoning techniques, such as Best-of-N sampling and beam search, influence reasoning performance, and assess the impact of reasoning-enhanced model distillation, specifically DeepSeek-R1. We will publicly release AnesBench, along with our CPT and SFT training datasets and evaluation code at https://github.com/MiliLab/AnesBench.
Abstract:Text-to-image generation has become increasingly popular, but achieving the desired images often requires extensive prompt engineering. In this paper, we explore how to decode textual prompts from reference images, a process we refer to as image reverse prompt engineering. This technique enables us to gain insights from reference images, understand the creative processes of great artists, and generate impressive new images. To address this challenge, we propose a method known as automatic reverse prompt optimization (ARPO). Specifically, our method refines an initial prompt into a high-quality prompt through an iteratively imitative gradient prompt optimization process: 1) generating a recreated image from the current prompt to instantiate its guidance capability; 2) producing textual gradients, which are candidate prompts intended to reduce the difference between the recreated image and the reference image; 3) updating the current prompt with textual gradients using a greedy search method to maximize the CLIP similarity between prompt and reference image. We compare ARPO with several baseline methods, including handcrafted techniques, gradient-based prompt tuning methods, image captioning, and data-driven selection method. Both quantitative and qualitative results demonstrate that our ARPO converges quickly to generate high-quality reverse prompts. More importantly, we can easily create novel images with diverse styles and content by directly editing these reverse prompts. Code will be made publicly available.
Abstract:Many keypoint detection and description methods have been proposed for image matching or registration. While these methods demonstrate promising performance for single-modality image matching, they often struggle with multimodal data because the descriptors trained on single-modality data tend to lack robustness against the non-linear variations present in multimodal data. Extending such methods to multimodal image matching often requires well-aligned multimodal data to learn modality-invariant descriptors. However, acquiring such data is often costly and impractical in many real-world scenarios. To address this challenge, we propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching using only single-modality training data. Specifically, we propose a novel latent feature aggregation module and a cumulative hybrid aggregation module to enhance the base keypoint descriptors trained on single-modality data by leveraging pre-trained features from Stable Diffusion models. We validate our method with recent keypoint detection and description methods in three multimodal retinal image datasets (CF-FA, CF-OCT, EMA-OCTA) and two remote sensing datasets (Optical-SAR and Optical-NIR). Extensive experiments demonstrate that the proposed MIFNet is able to learn modality-invariant feature for multimodal image matching without accessing the targeted modality and has good zero-shot generalization ability. The source code will be made publicly available.
Abstract:The detection of AI-generated faces is commonly approached as a binary classification task. Nevertheless, the resulting detectors frequently struggle to adapt to novel AI face generators, which evolve rapidly. In this paper, we describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images. The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images. Subsequently, we model the learned feature distribution of photographic face images using a Gaussian mixture model. Faces with low likelihoods are flagged as AI-generated. Both quantitative and qualitative experiments validate the effectiveness of our method. Our code is available at \url{https://github.com/MZMMSEC/AIGFD_EXIF.git}.
Abstract:Retinal image registration plays an important role in the ophthalmological diagnosis process. Since there exist variances in viewing angles and anatomical structures across different retinal images, keypoint-based approaches become the mainstream methods for retinal image registration thanks to their robustness and low latency. These methods typically assume the retinal surfaces are planar, and adopt feature matching to obtain the homography matrix that represents the global transformation between images. Yet, such a planar hypothesis inevitably introduces registration errors since retinal surface is approximately curved. This limitation is more prominent when registering image pairs with significant differences in viewing angles. To address this problem, we propose a hybrid registration framework called HybridRetina, which progressively registers retinal images with global and local deformable transformations. For that, we use a keypoint detector and a deformation network called GAMorph to estimate the global transformation and local deformable transformation, respectively. Specifically, we integrate multi-level pixel relation knowledge to guide the training of GAMorph. Additionally, we utilize an edge attention module that includes the geometric priors of the images, ensuring the deformation field focuses more on the vascular regions of clinical interest. Experiments on two widely-used datasets, FIRE and FLoRI21, show that our proposed HybridRetina significantly outperforms some state-of-the-art methods. The code is available at https://github.com/lyp-deeplearning/awesome-retinal-registration.
Abstract:In recent years, the multimedia forensics and security community has seen remarkable progress in multitask learning for DeepFake (i.e., face forgery) detection. The prevailing strategy has been to frame DeepFake detection as a binary classification problem augmented by manipulation-oriented auxiliary tasks. This strategy focuses on learning features specific to face manipulations, which exhibit limited generalizability. In this paper, we delve deeper into semantics-oriented multitask learning for DeepFake detection, leveraging the relationships among face semantics via joint embedding. We first propose an automatic dataset expansion technique that broadens current face forgery datasets to support semantics-oriented DeepFake detection tasks at both the global face attribute and local face region levels. Furthermore, we resort to joint embedding of face images and their corresponding labels (depicted by textual descriptions) for prediction. This approach eliminates the need for manually setting task-agnostic and task-specific parameters typically required when predicting labels directly from images. In addition, we employ a bi-level optimization strategy to dynamically balance the fidelity loss weightings of various tasks, making the training process fully automated. Extensive experiments on six DeepFake datasets show that our method improves the generalizability of DeepFake detection and, meanwhile, renders some degree of model interpretation by providing human-understandable explanations.
Abstract:In recent years, deep learning has greatly streamlined the process of generating realistic fake face images. Aware of the dangers, researchers have developed various tools to spot these counterfeits. Yet none asked the fundamental question: What digital manipulations make a real photographic face image fake, while others do not? In this paper, we put face forgery in a semantic context and define that computational methods that alter semantic face attributes to exceed human discrimination thresholds are sources of face forgery. Guided by our new definition, we construct a large face forgery image dataset, where each image is associated with a set of labels organized in a hierarchical graph. Our dataset enables two new testing protocols to probe the generalization of face forgery detectors. Moreover, we propose a semantics-oriented face forgery detection method that captures label relations and prioritizes the primary task (\ie, real or fake face detection). We show that the proposed dataset successfully exposes the weaknesses of current detectors as the test set and consistently improves their generalizability as the training set. Additionally, we demonstrate the superiority of our semantics-oriented method over traditional binary and multi-class classification-based detectors.
Abstract:Federated Learning (FL) seeks to train a model collaboratively without sharing private training data from individual clients. Despite its promise, FL encounters challenges such as high communication costs for large-scale models and the necessity for uniform model architectures across all clients and the server. These challenges severely restrict the practical applications of FL. To address these limitations, the integration of knowledge distillation (KD) into FL has been proposed, forming what is known as Federated Distillation (FD). FD enables more flexible knowledge transfer between clients and the server, surpassing the mere sharing of model parameters. By eliminating the need for identical model architectures across clients and the server, FD mitigates the communication costs associated with training large-scale models. This paper aims to offer a comprehensive overview of FD, highlighting its latest advancements. It delves into the fundamental principles underlying the design of FD frameworks, delineates FD approaches for tackling various challenges, and provides insights into the diverse applications of FD across different scenarios.
Abstract:The copilot framework, which aims to enhance and tailor large language models (LLMs) for specific complex tasks without requiring fine-tuning, is gaining increasing attention from the community. In this paper, we introduce the construction of a Healthcare Copilot designed for medical consultation. The proposed Healthcare Copilot comprises three main components: 1) the Dialogue component, responsible for effective and safe patient interactions; 2) the Memory component, storing both current conversation data and historical patient information; and 3) the Processing component, summarizing the entire dialogue and generating reports. To evaluate the proposed Healthcare Copilot, we implement an auto-evaluation scheme using ChatGPT for two roles: as a virtual patient engaging in dialogue with the copilot, and as an evaluator to assess the quality of the dialogue. Extensive results demonstrate that the proposed Healthcare Copilot significantly enhances the capabilities of general LLMs for medical consultations in terms of inquiry capability, conversational fluency, response accuracy, and safety. Furthermore, we conduct ablation studies to highlight the contribution of each individual module in the Healthcare Copilot. Code will be made publicly available on GitHub.
Abstract:Significant progress has been made recently in point cloud segmentation utilizing an encoder-decoder framework, which initially encodes point clouds into low-resolution representations and subsequently decodes high-resolution predictions. Inspired by the success of high-resolution architectures in image dense prediction, which always maintains a high-resolution representation throughout the entire learning process, we consider it also highly important for 3D dense point cloud analysis. Therefore, in this paper, we explore high-resolution architectures for 3D point cloud segmentation. Specifically, we generalize high-resolution architectures using a unified pipeline named PointHR, which includes a knn-based sequence operator for feature extraction and a differential resampling operator to efficiently communicate different resolutions. Additionally, we propose to avoid numerous on-the-fly computations of high-resolution architectures by pre-computing the indices for both sequence and resampling operators. By doing so, we deliver highly competitive high-resolution architectures while capitalizing on the benefits of well-designed point cloud blocks without additional effort. To evaluate these architectures for dense point cloud analysis, we conduct thorough experiments using S3DIS and ScanNetV2 datasets, where the proposed PointHR outperforms recent state-of-the-art methods without any bells and whistles. The source code is available at \url{https://github.com/haibo-qiu/PointHR}.