Abstract:Deep supervised hashing has become a pivotal technique in large-scale image retrieval, offering significant benefits in terms of storage and search efficiency. However, existing deep supervised hashing models predominantly focus on generating fixed-length hash codes. This approach fails to address the inherent trade-off between efficiency and effectiveness when using hash codes of varying lengths. To determine the optimal hash code length for a specific task, multiple models must be trained for different lengths, leading to increased training time and computational overhead. Furthermore, the current paradigm overlooks the potential relationships between hash codes of different lengths, limiting the overall effectiveness of the models. To address these challenges, we propose the Nested Hash Layer (NHL), a plug-and-play module designed for existing deep supervised hashing models. The NHL framework introduces a novel mechanism to simultaneously generate hash codes of varying lengths in a nested manner. To tackle the optimization conflicts arising from the multiple learning objectives associated with different code lengths, we further propose an adaptive weights strategy that dynamically monitors and adjusts gradients during training. Additionally, recognizing that the structural information in longer hash codes can provide valuable guidance for shorter hash codes, we develop a long-short cascade self-distillation method within the NHL to enhance the overall quality of the generated hash codes. Extensive experiments demonstrate that NHL not only accelerates the training process but also achieves superior retrieval performance across various deep hashing models. Our code is publicly available at https://github.com/hly1998/NHL.
Abstract:The gap between the trepidation of program reliability and the expense of repairs underscores the indispensability of Automated Program Repair (APR). APR is instrumental in transforming vulnerable programs into more robust ones, bolstering program reliability while simultaneously diminishing the financial burden of manual repairs. Commercial-scale language models (LM) have taken APR to unprecedented levels. However, the emergence reveals that for models fewer than 100B parameters, making single-step modifications may be difficult to achieve the desired effect. Moreover, humans interact with the LM through explicit prompts, which hinders the LM from receiving feedback from compiler and test cases to automatically optimize its repair policies. In this literature, we explore how small-scale LM (less than 20B) achieve excellent performance through process supervision and feedback. We start by constructing a dataset named CodeNet4Repair, replete with multiple repair records, which supervises the fine-tuning of a foundational model. Building upon the encouraging outcomes of reinforcement learning, we develop a reward model that serves as a critic, providing feedback for the fine-tuned LM's action, progressively optimizing its policy. During inference, we require the LM to generate solutions iteratively until the repair effect no longer improves or hits the maximum step limit. The results show that process-based not only outperforms larger outcome-based generation methods, but also nearly matches the performance of closed-source commercial large-scale LMs.
Abstract:Cognitive diagnosis has been developed for decades as an effective measurement tool to evaluate human cognitive status such as ability level and knowledge mastery. It has been applied to a wide range of fields including education, sport, psychological diagnosis, etc. By providing better awareness of cognitive status, it can serve as the basis for personalized services such as well-designed medical treatment, teaching strategy and vocational training. This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods. By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models. Further, we discuss future directions that are worthy of exploration. In addition, we release two Python libraries: EduData for easy access to some relevant public datasets we have collected, and EduCDM that implements popular CDMs to facilitate both applications and research purposes.
Abstract:Educational resource understanding is vital to online learning platforms, which have demonstrated growing applications recently. However, researchers and developers always struggle with using existing general natural language toolkits or domain-specific models. The issue raises a need to develop an effective and easy-to-use one that benefits AI education-related research and applications. To bridge this gap, we present a unified, modularized, and extensive library, EduNLP, focusing on educational resource understanding. In the library, we decouple the whole workflow to four key modules with consistent interfaces including data configuration, processing, model implementation, and model evaluation. We also provide a configurable pipeline to unify the data usage and model usage in standard ways, where users can customize their own needs. For the current version, we primarily provide 10 typical models from four categories, and 5 common downstream-evaluation tasks in the education domain on 8 subjects for users' usage. The project is released at: https://github.com/bigdata-ustc/EduNLP.
Abstract:Math Word Problems (MWPs) are crucial for evaluating the capability of Large Language Models (LLMs), with current research primarily focusing on questions with concise contexts. However, as real-world math problems often involve complex circumstances, LLMs' ability to solve long MWPs is vital for their applications in these scenarios, yet remains under-explored. This study pioneers the exploration of Context Length Generalizability (CoLeG), the ability of LLMs to solve long MWPs. We introduce Extended Grade-School Math (E-GSM), a collection of MWPs with lengthy narratives. Two novel metrics are proposed to assess the efficacy and resilience of LLMs in solving these problems. Our examination of existing zero-shot prompting techniques and both proprietary and open-source LLMs reveals a general deficiency in CoLeG. To alleviate these challenges, we propose distinct approaches for different categories of LLMs. For proprietary LLMs, a new instructional prompt is proposed to mitigate the influence of long context. For open-source LLMs, a new data augmentation task is developed to improve CoLeG. Our comprehensive results demonstrate the effectiveness of our proposed methods, showing not only improved performance on E-GSM but also generalizability across several other MWP benchmarks. Our findings pave the way for future research in employing LLMs for complex, real-world applications, offering practical solutions to current limitations and opening avenues for further exploration of model generalizability and training methodologies.
Abstract:Geometry Problem Solving (GPS), which is a classic and challenging math problem, has attracted much attention in recent years. It requires a solver to comprehensively understand both text and diagram, master essential geometry knowledge, and appropriately apply it in reasoning. However, existing works follow a paradigm of neural machine translation and only focus on enhancing the capability of encoders, which neglects the essential characteristics of human geometry reasoning. In this paper, inspired by dual-process theory, we propose a Dual-Reasoning Geometry Solver (DualGeoSolver) to simulate the dual-reasoning process of humans for GPS. Specifically, we construct two systems in DualGeoSolver, namely Knowledge System and Inference System. Knowledge System controls an implicit reasoning process, which is responsible for providing diagram information and geometry knowledge according to a step-wise reasoning goal generated by Inference System. Inference System conducts an explicit reasoning process, which specifies the goal in each reasoning step and applies the knowledge to generate program tokens for resolving it. The two systems carry out the above process iteratively, which behaves more in line with human cognition. We conduct extensive experiments on two benchmark datasets, GeoQA and GeoQA+. The results demonstrate the superiority of DualGeoSolver in both solving accuracy and robustness from explicitly modeling human reasoning process and knowledge application.
Abstract:Computerized Adaptive Testing (CAT) provides an efficient and tailored method for assessing the proficiency of examinees, by dynamically adjusting test questions based on their performance. Widely adopted across diverse fields like education, healthcare, sports, and sociology, CAT has revolutionized testing practices. While traditional methods rely on psychometrics and statistics, the increasing complexity of large-scale testing has spurred the integration of machine learning techniques. This paper aims to provide a machine learning-focused survey on CAT, presenting a fresh perspective on this adaptive testing method. By examining the test question selection algorithm at the heart of CAT's adaptivity, we shed light on its functionality. Furthermore, we delve into cognitive diagnosis models, question bank construction, and test control within CAT, exploring how machine learning can optimize these components. Through an analysis of current methods, strengths, limitations, and challenges, we strive to develop robust, fair, and efficient CAT systems. By bridging psychometric-driven CAT research with machine learning, this survey advocates for a more inclusive and interdisciplinary approach to the future of adaptive testing.
Abstract:Large language model evaluation plays a pivotal role in the enhancement of its capacity. Previously, numerous methods for evaluating large language models have been proposed in this area. Despite their effectiveness, these existing works mainly focus on assessing objective questions, overlooking the capability to evaluate subjective questions which is extremely common for large language models. Additionally, these methods predominantly utilize centralized datasets for evaluation, with question banks concentrated within the evaluation platforms themselves. Moreover, the evaluation processes employed by these platforms often overlook personalized factors, neglecting to consider the individual characteristics of both the evaluators and the models being evaluated. To address these limitations, we propose a novel anonymous crowd-sourcing evaluation platform, BingJian, for large language models that employs a competitive scoring mechanism where users participate in ranking models based on their performance. This platform stands out not only for its support of centralized evaluations to assess the general capabilities of models but also for offering an open evaluation gateway. Through this gateway, users have the opportunity to submit their questions, testing the models on a personalized and potentially broader range of capabilities. Furthermore, our platform introduces personalized evaluation scenarios, leveraging various forms of human-computer interaction to assess large language models in a manner that accounts for individual user preferences and contexts. The demonstration of BingJian can be accessed at https://github.com/Mingyue-Cheng/Bingjian.
Abstract:Sequential recommender systems (SRS) could capture dynamic user preferences by modeling historical behaviors ordered in time. Despite effectiveness, focusing only on the \textit{collaborative signals} from behaviors does not fully grasp user interests. It is also significant to model the \textit{semantic relatedness} reflected in content features, e.g., images and text. Towards that end, in this paper, we aim to enhance the SRS tasks by effectively unifying collaborative signals and semantic relatedness together. Notably, we empirically point out that it is nontrivial to achieve such a goal due to semantic gap issues. Thus, we propose an end-to-end two-stream architecture for sequential recommendation, named TSSR, to learn user preferences from ID-based and content-based sequence. Specifically, we first present novel hierarchical contrasting module, including coarse user-grained and fine item-grained terms, to align the representations of inter-modality. Furthermore, we also design a two-stream architecture to learn the dependence of intra-modality sequence and the complex interactions of inter-modality sequence, which can yield more expressive capacity in understanding user interests. We conduct extensive experiments on five public datasets. The experimental results show that the TSSR could yield superior performance than competitive baselines. We also make our experimental codes publicly available at https://anonymous.4open.science/r/TSSR-2A27/.
Abstract:Knowledge-based question answering (KBQA) is a key task in NLP research, and also an approach to access the web data and knowledge, which requires exploiting knowledge graphs (KGs) for reasoning. In the literature, one promising solution for KBQA is to incorporate the pretrained language model (LM) with KGs by generating KG-centered pretraining corpus, which has shown its superiority. However, these methods often depend on specific techniques and resources to work, which may not always be available and restrict its application. Moreover, existing methods focus more on improving language understanding with KGs, while neglect the more important human-like complex reasoning. To this end, in this paper, we propose a general Knowledge-Injected Curriculum Pretraining framework (KICP) to achieve comprehensive KG learning and exploitation for KBQA tasks, which is composed of knowledge injection (KI), knowledge adaptation (KA) and curriculum reasoning (CR). Specifically, the KI module first injects knowledge into the LM by generating KG-centered pretraining corpus, and generalizes the process into three key steps that could work with different implementations for flexible application. Next, the KA module learns knowledge from the generated corpus with LM equipped with an adapter as well as keeps its original natural language understanding ability to reduce the negative impacts of the difference between the generated and natural corpus. Last, to enable the LM with complex reasoning, the CR module follows human reasoning patterns to construct three corpora with increasing difficulties of reasoning, and further trains the LM from easy to hard in a curriculum manner. We provide an implementation of the general framework, and evaluate the proposed KICP on four real-word datasets. The results demonstrate that our framework can achieve higher performances.