Abstract:Relying on crowdsourced workers, data crowdsourcing platforms are able to efficiently provide vast amounts of labeled data. Due to the variability in the annotation quality of crowd workers, modern techniques resort to redundant annotations and subsequent label aggregation to infer true labels. However, these methods require model updating during the inference, posing challenges in real-world implementation. Meanwhile, in recent years, many data labeling tasks have begun to require skilled and experienced annotators, leading to an increasing demand for long-term annotators. These annotators could leave substantial historical annotation records on the crowdsourcing platforms, which can benefit label aggregation, but are ignored by previous works. Hereby, in this paper, we propose a novel label aggregation technique, which does not need any model updating during inference and can extensively explore the historical annotation records. We call it SuperLA, a Supervised Label Aggregation method. Inside this model, we design three types of input features and a straightforward neural network structure to merge all the information together and subsequently produce aggregated labels. Based on comparison experiments conducted on 22 public datasets and 11 baseline methods, we find that SuperLA not only outperforms all those baselines in inference performance but also offers significant advantages in terms of efficiency.
Abstract:Although the pre-training followed by fine-tuning paradigm is used extensively in many fields, there is still some controversy surrounding the impact of pre-training on the fine-tuning process. Currently, experimental findings based on text and image data lack consensus. To delve deeper into the unsupervised pre-training followed by fine-tuning paradigm, we have extended previous research to a new modality: time series. In this study, we conducted a thorough examination of 150 classification datasets derived from the Univariate Time Series (UTS) and Multivariate Time Series (MTS) benchmarks. Our analysis reveals several key conclusions. (i) Pre-training can only help improve the optimization process for models that fit the data poorly, rather than those that fit the data well. (ii) Pre-training does not exhibit the effect of regularization when given sufficient training time. (iii) Pre-training can only speed up convergence if the model has sufficient ability to fit the data. (iv) Adding more pre-training data does not improve generalization, but it can strengthen the advantage of pre-training on the original data volume, such as faster convergence. (v) While both the pre-training task and the model structure determine the effectiveness of the paradigm on a given dataset, the model structure plays a more significant role.
Abstract:Density-based and classification-based methods have ruled unsupervised anomaly detection in recent years, while reconstruction-based methods are rarely mentioned for the poor reconstruction ability and low performance. However, the latter requires no costly extra training samples for the unsupervised training that is more practical, so this paper focuses on improving this kind of method and proposes a novel Omni-frequency Channel-selection Reconstruction (OCR-GAN) network to handle anomaly detection task in a perspective of frequency. Concretely, we propose a Frequency Decoupling (FD) module to decouple the input image into different frequency components and model the reconstruction process as a combination of parallel omni-frequency image restorations, as we observe a significant difference in the frequency distribution of normal and abnormal images. Given the correlation among multiple frequencies, we further propose a Channel Selection (CS) module that performs frequency interaction among different encoders by adaptively selecting different channels. Abundant experiments demonstrate the effectiveness and superiority of our approach over different kinds of methods, e.g., achieving a new state-of-the-art 98.3 detection AUC on the MVTec AD dataset without extra training data that markedly surpasses the reconstruction-based baseline by +38.1 and the current SOTA method by +0.3. Source code will be available at https://github.com/zhangzjn/OCR-GAN.