Refer to the report for detailed contributions
Abstract:State-space models (SSMs) have emerged as efficient alternatives to Transformers for sequence modeling, offering superior scalability through recurrent structures. However, their training remains costly and the ecosystem around them is far less mature than that of Transformers. Moreover, the structural heterogeneity between SSMs and Transformers makes it challenging to efficiently distill knowledge from pretrained attention models. In this work, we propose Cross-architecture distillation via Attention Bridge (CAB), a novel data-efficient distillation framework that efficiently transfers attention knowledge from Transformer teachers to state-space student models. Unlike conventional knowledge distillation that transfers knowledge only at the output level, CAB enables token-level supervision via a lightweight bridge and flexible layer-wise alignment, improving both efficiency and transferability. We further introduce flexible layer-wise alignment strategies to accommodate architectural discrepancies between teacher and student. Extensive experiments across vision and language domains demonstrate that our method consistently improves the performance of state-space models, even under limited training data, outperforming both standard and cross-architecture distillation methods. Our findings suggest that attention-based knowledge can be efficiently transferred to recurrent models, enabling rapid utilization of Transformer expertise for building a stronger SSM community.
Abstract:We present a survey on 4D generation and reconstruction, a fast-evolving subfield of computer graphics whose developments have been propelled by recent advances in neural fields, geometric and motion deep learning, as well 3D generative artificial intelligence (GenAI). While our survey is not the first of its kind, we build our coverage of the domain from a unique and distinctive perspective of 4D representations\/}, to model 3D geometry evolving over time while exhibiting motion and interaction. Specifically, instead of offering an exhaustive enumeration of many works, we take a more selective approach by focusing on representative works to highlight both the desirable properties and ensuing challenges of each representation under different computation, application, and data scenarios. The main take-away message we aim to convey to the readers is on how to select and then customize the appropriate 4D representations for their tasks. Organizationally, we separate the 4D representations based on three key pillars: geometry, motion, and interaction. Our discourse will not only encompass the most popular representations of today, such as neural radiance fields (NeRFs) and 3D Gaussian Splatting (3DGS), but also bring attention to relatively under-explored representations in the 4D context, such as structured models and long-range motions. Throughout our survey, we will reprise the role of large language models (LLMs) and video foundational models (VFMs) in a variety of 4D applications, while steering our discussion towards their current limitations and how they can be addressed. We also provide a dedicated coverage on what 4D datasets are currently available, as well as what is lacking, in driving the subfield forward. Project page:https://mingrui-zhao.github.io/4DRep-GMI/
Abstract:Macro lens has the advantages of high resolution and large magnification, and 3D modeling of small and detailed objects can provide richer information. However, defocus blur in macrophotography is a long-standing problem that heavily hinders the clear imaging of the captured objects and high-quality 3D reconstruction of them. Traditional image deblurring methods require a large number of images and annotations, and there is currently no multi-view 3D reconstruction method for macrophotography. In this work, we propose a joint deblurring and 3D reconstruction method for macrophotography. Starting from multi-view blurry images captured, we jointly optimize the clear 3D model of the object and the defocus blur kernel of each pixel. The entire framework adopts a differentiable rendering method to self-supervise the optimization of the 3D model and the defocus blur kernel. Extensive experiments show that from a small number of multi-view images, our proposed method can not only achieve high-quality image deblurring but also recover high-fidelity 3D appearance.
Abstract:With the rapid advancement of large language models (LLMs), natural language processing (NLP) has achieved remarkable progress. Nonetheless, significant challenges remain in handling texts with ambiguity, polysemy, or uncertainty. We introduce the Fuzzy Reasoning Chain (FRC) framework, which integrates LLM semantic priors with continuous fuzzy membership degrees, creating an explicit interaction between probability-based reasoning and fuzzy membership reasoning. This transition allows ambiguous inputs to be gradually transformed into clear and interpretable decisions while capturing conflicting or uncertain signals that traditional probability-based methods cannot. We validate FRC on sentiment analysis tasks, where both theoretical analysis and empirical results show that it ensures stable reasoning and facilitates knowledge transfer across different model scales. These findings indicate that FRC provides a general mechanism for managing subtle and ambiguous expressions with improved interpretability and robustness.
Abstract:Diffusion Transformers (DiTs) excel at visual generation yet remain hampered by slow sampling. Existing training-free accelerators - step reduction, feature caching, and sparse attention - enhance inference speed but typically rely on a uniform heuristic or a manually designed adaptive strategy for all images, leaving quality on the table. Alternatively, dynamic neural networks offer per-image adaptive acceleration, but their high fine-tuning costs limit broader applicability. To address these limitations, we introduce RAPID3: Tri-Level Reinforced Acceleration Policies for Diffusion Transformers, a framework that delivers image-wise acceleration with zero updates to the base generator. Specifically, three lightweight policy heads - Step-Skip, Cache-Reuse, and Sparse-Attention - observe the current denoising state and independently decide their corresponding speed-up at each timestep. All policy parameters are trained online via Group Relative Policy Optimization (GRPO) while the generator remains frozen. Meanwhile, an adversarially learned discriminator augments the reward signal, discouraging reward hacking by boosting returns only when generated samples stay close to the original model's distribution. Across state-of-the-art DiT backbones, including Stable Diffusion 3 and FLUX, RAPID3 achieves nearly 3x faster sampling with competitive generation quality.
Abstract:Imitation learning based policies perform well in robotic manipulation, but they often degrade under *egocentric viewpoint shifts* when trained from a single egocentric viewpoint. To address this issue, we present **EgoDemoGen**, a framework that generates *paired* novel egocentric demonstrations by retargeting actions in the novel egocentric frame and synthesizing the corresponding egocentric observation videos with proposed generative video repair model **EgoViewTransfer**, which is conditioned by a novel-viewpoint reprojected scene video and a robot-only video rendered from the retargeted joint actions. EgoViewTransfer is finetuned from a pretrained video generation model using self-supervised double reprojection strategy. We evaluate EgoDemoGen on both simulation (RoboTwin2.0) and real-world robot. After training with a mixture of EgoDemoGen-generated novel egocentric demonstrations and original standard egocentric demonstrations, policy success rate improves **absolutely** by **+17.0%** for standard egocentric viewpoint and by **+17.7%** for novel egocentric viewpoints in simulation. On real-world robot, the **absolute** improvements are **+18.3%** and **+25.8%**. Moreover, performance continues to improve as the proportion of EgoDemoGen-generated demonstrations increases, with diminishing returns. These results demonstrate that EgoDemoGen provides a practical route to egocentric viewpoint-robust robotic manipulation.
Abstract:Multimodal large language models (MLLMs), which integrate language and visual cues for problem-solving, are crucial for advancing artificial general intelligence (AGI). However, current benchmarks for measuring the intelligence of MLLMs suffer from limited scale, narrow coverage, and unstructured knowledge, offering only static and undifferentiated evaluations. To bridge this gap, we introduce MDK12-Bench, a large-scale multidisciplinary benchmark built from real-world K-12 exams spanning six disciplines with 141K instances and 6,225 knowledge points organized in a six-layer taxonomy. Covering five question formats with difficulty and year annotations, it enables comprehensive evaluation to capture the extent to which MLLMs perform over four dimensions: 1) difficulty levels, 2) temporal (cross-year) shifts, 3) contextual shifts, and 4) knowledge-driven reasoning. We propose a novel dynamic evaluation framework that introduces unfamiliar visual, textual, and question form shifts to challenge model generalization while improving benchmark objectivity and longevity by mitigating data contamination. We further evaluate knowledge-point reference-augmented generation (KP-RAG) to examine the role of knowledge in problem-solving. Key findings reveal limitations in current MLLMs in multiple aspects and provide guidance for enhancing model robustness, interpretability, and AI-assisted education.
Abstract:Multimodal AI models have achieved impressive performance in tasks that require integrating information from multiple modalities, such as vision and language. However, their "black-box" nature poses a major barrier to deployment in high-stakes applications where interpretability and trustworthiness are essential. How to explain cross-modal interactions in multimodal AI models remains a major challenge. While existing model explanation methods, such as attention map and Grad-CAM, offer coarse insights into cross-modal relationships, they cannot precisely quantify the synergistic effects between modalities, and are limited to open-source models with accessible internal weights. Here we introduce MultiSHAP, a model-agnostic interpretability framework that leverages the Shapley Interaction Index to attribute multimodal predictions to pairwise interactions between fine-grained visual and textual elements (such as image patches and text tokens), while being applicable to both open- and closed-source models. Our approach provides: (1) instance-level explanations that reveal synergistic and suppressive cross-modal effects for individual samples - "why the model makes a specific prediction on this input", and (2) dataset-level explanation that uncovers generalizable interaction patterns across samples - "how the model integrates information across modalities". Experiments on public multimodal benchmarks confirm that MultiSHAP faithfully captures cross-modal reasoning mechanisms, while real-world case studies demonstrate its practical utility. Our framework is extensible beyond two modalities, offering a general solution for interpreting complex multimodal AI models.
Abstract:Diffusion policies have achieved great success in online reinforcement learning (RL) due to their strong expressive capacity. However, the inference of diffusion policy models relies on a slow iterative sampling process, which limits their responsiveness. To overcome this limitation, we propose Flow Policy Mirror Descent (FPMD), an online RL algorithm that enables 1-step sampling during policy inference. Our approach exploits a theoretical connection between the distribution variance and the discretization error of single-step sampling in straight interpolation flow matching models, and requires no extra distillation or consistency training. We present two algorithm variants based on flow policy and MeanFlow policy parametrizations, respectively. Extensive empirical evaluations on MuJoCo benchmarks demonstrate that our algorithms show strong performance comparable to diffusion policy baselines while requiring hundreds of times fewer function evaluations during inference.




Abstract:Face aging has become a crucial task in computer vision, with applications ranging from entertainment to healthcare. However, existing methods struggle with achieving a realistic and seamless transformation across the entire lifespan, especially when handling large age gaps or extreme head poses. The core challenge lies in balancing age accuracy and identity preservation--what we refer to as the Age-ID trade-off. Most prior methods either prioritize age transformation at the expense of identity consistency or vice versa. In this work, we address this issue by proposing a two-pass face aging framework, named Cradle2Cane, based on few-step text-to-image (T2I) diffusion models. The first pass focuses on solving age accuracy by introducing an adaptive noise injection (AdaNI) mechanism. This mechanism is guided by including prompt descriptions of age and gender for the given person as the textual condition. Also, by adjusting the noise level, we can control the strength of aging while allowing more flexibility in transforming the face. However, identity preservation is weakly ensured here to facilitate stronger age transformations. In the second pass, we enhance identity preservation while maintaining age-specific features by conditioning the model on two identity-aware embeddings (IDEmb): SVR-ArcFace and Rotate-CLIP. This pass allows for denoising the transformed image from the first pass, ensuring stronger identity preservation without compromising the aging accuracy. Both passes are jointly trained in an end-to-end way. Extensive experiments on the CelebA-HQ test dataset, evaluated through Face++ and Qwen-VL protocols, show that our Cradle2Cane outperforms existing face aging methods in age accuracy and identity consistency.